matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMarkov-Ketten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Markov-Ketten
Markov-Ketten < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Ketten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:54 Do 04.04.2019
Autor: Mandy_90

Aufgabe
1.
Sei [mm] X_{i} [/mm] die Augenzahl des i-ten Würfelwurfs für 1 [mm] \le [/mm] i [mm] \le [/mm] n und [mm] S_{n}:=\summe_{i=1}^{n} X_{i} [/mm] der ersten n Würfelwürfe, wobei die Würfe als unabhängig voneinander zu betrachten sind.
Zeigen Sie, dass [mm] S_{n} [/mm] eine Markovkette ist und bestimmen Sie die Übergangswahrscheinlichkeiten

2. Seien [mm] Y_{1},...Y_{n} [/mm] i.i.d. mit [mm] Y_{1} \sim [/mm] Ber(p) für p [mm] \in [/mm] (0,1) und [mm] Z_{n}:=\summe_{i=1}^{n} Y_{i} [/mm]
Bestimmen Sie [mm] P(Y_{1}=1|Z_{n}=k) [/mm] in Abhängigkeit von k.

3. Welche Aussage können Sie für [mm] f(k)=P(Y_{1}=1|Z_{n}=k) [/mm] treffen, falls k gegen n geht ? Ist das Ergebnis sinnvoll ?

Hallo liebe Community,

Ich komme bei dieser Aufgabe nicht weiter.

1. Wie zeigt man dass etwas eine Markovkette ist ? Ich hab gar keinen Plan.
Und die Übergangswahrscheinlichkeiten kann ich eigentlich auch bestimmen, aber hier kann ja n 1000 oder noch größer sein. Wie soll ich da die Übergangswahrscheinlichkeiten bestimmen ?

2. Da [mm] Y_{1} [/mm] Bernoulli verteilt, nimmt es die Werte 0 und 1 an. Weiter komme ich leider nicht und bei

3. Wenn [mm] Z_{n} [/mm] gegen n geht, heißt es ja dass [mm] Y_{i} [/mm] immer den Wert 1 annimmt.

Danke euch schonmal  


        
Bezug
Markov-Ketten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Fr 05.04.2019
Autor: hippias


> 1.
>  Sei [mm]X_{i}[/mm] die Augenzahl des i-ten Würfelwurfs für 1 [mm]\le[/mm]
> i [mm]\le[/mm] n und [mm]S_{n}:=\summe_{i=1}^{n} X_{i}[/mm] der ersten n
> Würfelwürfe, wobei die Würfe als unabhängig voneinander
> zu betrachten sind.
> Zeigen Sie, dass [mm]S_{n}[/mm] eine Markovkette ist und bestimmen
> Sie die Übergangswahrscheinlichkeiten
>  
> 2. Seien [mm]Y_{1},...Y_{n}[/mm] i.i.d. mit [mm]Y_{1} \sim[/mm] Ber(p) für p
> [mm]\in[/mm] (0,1) und [mm]Z_{n}:=\summe_{i=1}^{n} Y_{i}[/mm]
>  Bestimmen Sie
> [mm]P(Y_{1}=1|Z_{n}=k)[/mm] in Abhängigkeit von k.
>
> 3. Welche Aussage können Sie für [mm]f(k)=P(Y_{1}=1|Z_{n}=k)[/mm]
> treffen, falls k gegen n geht ? Ist das Ergebnis sinnvoll
> ?
>  Hallo liebe Community,
>  
> Ich komme bei dieser Aufgabe nicht weiter.
>
> 1. Wie zeigt man dass etwas eine Markovkette ist ?

Indem Du überprüfst, ob die Voraussetzungen in der Definition erfüllt sind.

> Ich hab
> gar keinen Plan.
> Und die Übergangswahrscheinlichkeiten kann ich eigentlich
> auch bestimmen, aber hier kann ja n 1000 oder noch größer
> sein. Wie soll ich da die Übergangswahrscheinlichkeiten
> bestimmen ?
>  
> 2. Da [mm]Y_{1}[/mm] Bernoulli verteilt, nimmt es die Werte 0 und 1
> an.

Was weisst Du über die Verteilung von [mm] $Z_{n}$? [/mm] Was bedeutet der Strich zwischen den Ereignissen [mm] $Y_{1}=1$ [/mm] und [mm] $Z_{n}=k$? [/mm] Es gibt eine Formel, um so etwas zu berechnen...

> Weiter komme ich leider nicht und bei
>
> 3. Wenn [mm]Z_{n}[/mm] gegen n geht, heißt es ja dass [mm]Y_{i}[/mm] immer
> den Wert 1 annimmt.

Richtig. Also müsste [mm] $P(Y_{1}=1|Z_{n}=n)=?$ [/mm] gelten. Das kannst Du überprüfen, sobald Du 2. gelöst hast.

>
> Danke euch schonmal  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]