Mantelfläche durch Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Wie man auf die Formel für die Mantelfläche eines Rotationskörpers kommt weiß ich, kann diese auch herleiten.
Jedoch hab ich eine kleine Blokkade bei der Begründung, warum die Formel
[mm] M=\integral_{a}^{b}{2*pi*f(x) dx}
[/mm]
nciht funktioniert bzw falsch ist, analog zur Volumenberechung des Körpers mit
[mm] V=\integral_{a}^{b}{pi*(f(x))^{2} dx} [/mm]
ich würde doch durch meine "falsche erdachte" formel für M für jeden x wert den kreisumfang mit dem radius f(x) berechnen, un jeden kreisumfang dann von a bis b addieren, also integrieren. was man ja auch bei der volumenrechnung macht.
Hoffe ihr versteht mein Problem und könnt mir meinen Denkfehler aufzeigen
Vielen Dank
|
|
|
|
> Hallo!
>
> Wie man auf die Formel für die Mantelfläche eines
> Rotationskörpers kommt weiß ich, kann diese auch herleiten.
> Jedoch hab ich eine kleine Blockade bei der Begründung,
> warum die Formel
> [mm]M=\integral_{a}^{b}{2*pi*f(x) dx}[/mm]
> nciht funktioniert bzw
> falsch ist, analog zur Volumenberechung des Körpers mit
> [mm]V=\integral_{a}^{b}{pi*(f(x))^{2} dx}[/mm]
> ich würde doch durch meine "falsche erdachte" formel für M
> für jeden x wert den kreisumfang mit dem radius f(x)
> berechnen, un jeden kreisumfang dann von a bis b addieren,
> also integrieren. was man ja auch bei der volumenrechnung
> macht.
> Hoffe ihr versteht mein Problem und könnt mir meinen
> Denkfehler aufzeigen
> Vielen Dank
Guten Abend,
mit dieser Rechnung approximierst du die Oberfläche
der Rotationsfläche durch eine Summe von Zylinder-
Mantelflächen, deren Mantellinien alle parallel zur
Rotationsachse sind. Dabei kommt im Allgemeinen
ein zu kleiner Wert für die Oberfläche heraus, denn
die Mantellinien der Kegelstümpfe (anstatt Zylinder),
die man für die Approximation benützen sollte, sind
um einen Faktor [mm] \wurzel{1+y'^2} [/mm] länger als die entsprechenden
Zylinder-Mantellinien. Diese systematische Abweichung
fällt bei der Limesberechnung nicht heraus, wie es z.B.
bei der Volumenberechnung der Fall wäre.
LG Al-Chw.
|
|
|
|
|
Also wird ber der Herleitung für das Rotationsvolumen auch die Approximation durch Kegelstümpfe verwendet, bloß das der zusätzliche term sich dann aufhebt/wegkürzt?Danke für die Antwort
Also hab den denkfehler gemacht, dass ich dachte bei der Volumenberechnung wird durch Zylinderapproximation hergeleitet. Das klappt in dem Fall zwar auch, doch der rihcitge Weg ist denke ich über die Kegelstümpfe. Danke nochmal
|
|
|
|