matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieMannigfaltigkeit orientierbar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Mannigfaltigkeit orientierbar
Mannigfaltigkeit orientierbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mannigfaltigkeit orientierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Do 27.01.2011
Autor: Teufel

Aufgabe
Sei $M [mm] \subset \IR^n$ [/mm] eine (n-1)-dimensionale Mannigfaltigkeit. Zeige: Falls es eine stetige Abbildung $v: M [mm] \to \IR^n$ [/mm] gibt, sodass [mm] $v(p)\notin [/mm] T_pM$ (Tangentialraum von M in p) für alle [mm] $p\in [/mm] M$ gilt, dann ist M orientierbar.

Hi!

Also ich hatte mir gedacht, dass man sicher irgendwie zeigen kann, dass man ausgehend von diesem gegebenen v ein anderes Vektorfeld w konstruieren kann, das ein stetiges Normalenfeld auf M ist. Irgendwie via w=v+(Vektor aus Tangentialraum). Daraus würde ja dann schon die Orientierbarkeit folgen, denn weil v keine Nullstelle besitzt (diese läge ja in T_pM), besitzt w auch keine (v und Vektoren aus T_pM sind linear unabhängig), und weil es ein stetiges Normalenvektorfeld aus M gibt, das nirgends 0 wird, wäre M orientierbar.

Irgendwie muss man ja die Vektoren von v auch alle so biegen können, dass die senkrecht auf der Mannigfaltigkeit stehen, denn $span(v(p)) [mm] \oplus T_pM=\IR^n$, [/mm] also man kann jeden Vektor des [mm] \IR^n [/mm] bilden, wenn man zu v(p) irgendeinen Vektor aus dem Tangentialraum addiert.

Ist diese Überlegung richtig? Und reicht diese Begründung vielleicht sogar schon? Und wenn nicht, kann ich irgendwie w konkret aus v ableiten?

Vielen Dank.

        
Bezug
Mannigfaltigkeit orientierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Do 27.01.2011
Autor: rainerS

Hallo Teufel!

> Sei [mm]M \subset \IR^n[/mm] eine (n-1)-dimensionale
> Mannigfaltigkeit. Zeige: Falls es eine stetige Abbildung [mm]v: M \to \IR^n[/mm]
> gibt, sodass [mm]v(p)\notin T_pM[/mm] (Tangentialraum von M in p)
> für alle [mm]p\in M[/mm] gilt, dann ist M orientierbar.
>  Hi!
>  
> Also ich hatte mir gedacht, dass man sicher irgendwie
> zeigen kann, dass man ausgehend von diesem gegebenen v ein
> anderes Vektorfeld w konstruieren kann, das ein stetiges
> Normalenfeld auf M ist. Irgendwie via w=v+(Vektor aus
> Tangentialraum).

Ja, das scheint mir der richtige Weg.

> Daraus würde ja dann schon die
> Orientierbarkeit folgen, denn weil v keine Nullstelle
> besitzt (diese läge ja in T_pM), besitzt w auch keine (v
> und Vektoren aus T_pM sind linear unabhängig), und weil es
> ein stetiges Normalenvektorfeld aus M gibt, das nirgends 0
> wird, wäre M orientierbar.

Für jedes $p$ ist $T_pM$ ein $(n-1)$-dim. Unterraum des [mm] $\IR^n$, [/mm] daher gibt es für jedes p auch ein orthogonales Komplement dazu. Damit kannst du auch für jedes $p$ den Vektor $v(p)$ in eine Summe zweier Vektoren zerlegen, deren einer in $T_pM$ liegt, der andere $w(p)$ im jeweiligen Komplement.

> Ist diese Überlegung richtig? Und reicht diese Begründung
> vielleicht sogar schon? Und wenn nicht, kann ich irgendwie
> w konkret aus v ableiten?

Versuch's mit der Basisdarstellung von $v(p)$: der Anteil, der sich nicht durch eine Basis von $T_pM$ ausdrücken lässt, ist $w(p)$. Damit müsstest du auch die Stetigkeit hinkriegen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Mannigfaltigkeit orientierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Do 27.01.2011
Autor: Teufel

Hi!

Danke erst einmal. Aber wie meinst du das genau mit Basisdarstellung von v(p)?

Bezug
                        
Bezug
Mannigfaltigkeit orientierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Do 27.01.2011
Autor: rainerS

Hallo Teufel!

> Danke erst einmal. Aber wie meinst du das genau mit
> Basisdarstellung von v(p)?

In jedem Punkt p hast du doch eine Basis [mm] $b_{p,1},\dots,b_{p,n}$, [/mm] sodass [mm] $b_{p,1},\dots,b_{p,n-1}$ [/mm] eine Basis des $T_pM$ sind und [mm] $b_{p,n}$ [/mm] im orthogonalen Komplement von $T_pM$ liegt.

Damit ist $v(p) = [mm] \summe_{i} v_i(p) b_{p,i}$. [/mm] Definiere $w(p) := [mm] v_n(p) b_{p,n}$ [/mm] .

Viele Grüße
   Rainer

Bezug
                                
Bezug
Mannigfaltigkeit orientierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Do 27.01.2011
Autor: Teufel

Ah, klar, vielen Dank! Doch so einfach. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]