matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMal wieder invarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Mal wieder invarianz
Mal wieder invarianz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mal wieder invarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 27.04.2005
Autor: gymnozist

Hi, ich komme mit dieser invarianz einfach nicht klar.
Ich habe hier so eine Aufgabe:
Sei V ein Vektorraum, sei f: V--> V ein Endomorphismus sein [mm] U_1 [/mm] und [mm] U_2 [/mm] (teilmenge von )V in V f-invariante Unterräume
Ich soll jetzt zeigen, dass [mm] U_1 [/mm] geschnitten [mm] U_2 [/mm] und [mm] U_1 [/mm] + [mm] U_2 [/mm]  f-invariant sind.
Ich ieß zwar, dass ich zeigen muß, dass wenn ich ein element aus [mm] U_1 [/mm] nehme und ein aus [mm] U_2 [/mm] und diese beiden Inklusionen darauf anwende sie wieder in [mm] U_1 [/mm] und [mm] U_2 [/mm] sein müssen, aber wie verstehe ich einfach nicht.
Wäre echt nett, falls mir das mal jemand an diesem Beispiel erklären könnte.

Dann wäre da noch:
Sei  [mm] \gamma [/mm] _1  [mm] \not= \gamma [/mm] _2
Und sei A= [mm] J(\gamma_1 [/mm] , (3)) direkte Summe [mm] J(\gamma_2 [/mm] , (2))
und ich soll alle f-invarianten Unterräume bestimmen. Da ich berets das obere nicht kann, weiß ich auch bei dieser Aufgabe nicht weiter.
Wäre echt damkbar für hilfe.



        
Bezug
Mal wieder invarianz: Idee
Status: (Antwort) fertig Status 
Datum: 11:05 Do 28.04.2005
Autor: Wogi

U heißt f-invariant, falls f, eingeschränkt auf U, die Menge U zumindest auf eine Teilmenge von U abbildet.
Das heißt das selbe wie:
Sei [mm] u\in [/mm] U und U sei f-invariant. Dann gilt: f(u) [mm] \in [/mm] U.
Wenn ja, dann ist deine Aufgabe leicht.

Sei [mm] v\in U_{1}\cap U_{2}. [/mm] Dann ist [mm] f(v)\in U_{1}, [/mm] weil v in [mm] U_1 [/mm] liegt und f [mm] U_{1} [/mm] nach [mm] U_{1} [/mm] abbildet und f(v) [mm] \in U_{2}, [/mm] weil [mm] v\in U_{2} [/mm] liegt und f [mm] U_{2} [/mm] nach [mm] U_{2} [/mm] abbildet.

Dann ist also [mm] f(v)\in U_{1}\cap U_{2}, [/mm] was bedeutet [mm] U_{1}\cap U_{2} [/mm] ist f-invariant.

Für [mm] U_{1}+U_{2} [/mm] kannst du dir das ja selber überlegen.

Man muß also also nachsehen, wo das f(v) liegt, wenn [mm] v\in U_{1}+U_{2} [/mm] ist. Muß f(v) auch in dieser Menge liegen, dann ist die Menge f-invariant. Wenn es möglich ist, daß f(v) außerhalb dieser Menge liegt, dann ist die Menge nicht f-invariant.


  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]