matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMächtigkeit von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Mächtigkeit von Mengen
Mächtigkeit von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Mengen: Aufgabe a,b,c
Status: (Frage) beantwortet Status 
Datum: 20:19 Sa 09.06.2007
Autor: Tvenna

Aufgabe
Für reelle Zahlen [mm] a,b\in\IR\setminus0 [/mm] definieren wir [mm] a\sim [/mm] b [mm] :\gdw [/mm] a*b>0.
Zeigen sie:
[mm] 1)\forall a\in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] a
[mm] 2)\forall [/mm] a,b [mm] \in\IR\setminus\{0\} [/mm] : [mm] a\sim [/mm] b [mm] \Rightarrow [/mm] b [mm] \sim [/mm] a
[mm] 3)\forall [/mm] a,b,c [mm] \in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] b [mm] \wedge [/mm] b [mm] \sim [/mm] c [mm] \Rightarrow [/mm] a [mm] \sim [/mm] c.

Hallo!
Ich habe folgende Aufgabe gestellt bekommen und komme nicht richtig voran.
Mengen und Mächtigkeit haben wir zum ersten mal, und ich weiss nicht so recht wie ich damit vorgehen muss.
zu 1) Das könnte man ja über die Umkehrfunktion machen, nur weiss ich nicht so recht wie man das machen soll. Nimmt man sich da einfach Mengen her?
zu 2) Da wollte ich auch zeigen, dass a [mm] \tob [/mm] bijektiv ist, dann ist auch [mm] f^{-1} b\toa [/mm] bijektiv, aber wieder hake ich an der Schreibweise und an der Umkehrfunktion...
zu 3) auch dies würde ich gerne mit der Bijektivität beweisen..
Ich habe leider wirklich noch keinen Plan wie ich daran gehen soll..
Hat jemand einen Tip oder ein Beispiel?
Viele Grüsse

        
Bezug
Mächtigkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 09.06.2007
Autor: schachuzipus

Hallo Tvenna,

was willst du denn mit Funktionen und Bijektivität? [kopfkratz3]

Und wo ist der Bezug zu "Mächtigkeit von Mengen"? - hmm

M.E. sieht die Aufgaben schwer danach aus, dass du zeigen sollst, dass [mm] $\sim$ [/mm] eine Äquivalenzrelation auf [mm] $\IR\setminus\{0\}\times\IR\setminus\{0\}$ [/mm] ist.

Mal zu (a)

nach def [mm] \sim [/mm] gilt [mm] a\sim a\gdw a\cdot{}a=a^2>0 [/mm] und das gilt doch augenscheinlich für alle [mm] a\in\IR\setminus\{0\} [/mm]

zu (b) Stichwort "Kommutativität von [mm] \cdot [/mm] in [mm] \IR [/mm]

(c) die Transitivität kriegste auch hin - benutze einfach die def von [mm] \sim [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]