matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMächtigkeit von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Mächtigkeit von Funktionen
Mächtigkeit von Funktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Mo 29.10.2007
Autor: Baeda

Aufgabe
Seien A, B zwei endlichen Mengen und a = #A und b = #B. Sei Abb(A, B) = { f | f : A -> B ist eine Abbildung } die Menge aller Abbildungen von A nach B.
a) Bestimme die Kardinalität #Abb(A, B).
Hinweis: Überlege dir, auf wieviele Arten man ein Element [mm] x \in\ A\ [/mm] abbilden kann.
b) Bestimme für B = {0, 1} eine Bijektion von der obigen Menge F auf die Potenzmenge P(A) und beweise deine Antwort.
c) Bestimme die Kardinalität #P(A).

zu a): Ist die Kardinalität dann nicht die Kardinalität von B?
zu b) & c): Was ist eine Bijektion? Wie und was muss ich machen?
Danke schonmal für eure Hilfe.
lg Peter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mächtigkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Mo 29.10.2007
Autor: leduart

Hallo
Deine Antwort auf a) ist falsch , denn für ein einziges x aus A hast du doch schon  b Möglichkeiten b=Mächtigkeit von B. für y aus A hast du wieder so viele usw.
Überleg dirs mal für kleine Mengen A 2 elemente, B 3 oder umgekehrt!

Bijektion Bijektive Zuordnung oder Funktion.
Gruss leduart

Bezug
                
Bezug
Mächtigkeit von Funktionen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Mo 29.10.2007
Autor: Baeda

Ist dann die Kardinalität der Abb. [mm] a^b [/mm], oder?

Bezug
                        
Bezug
Mächtigkeit von Funktionen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Di 30.10.2007
Autor: Baeda

Hab nochmal überlegt und bin auf den schluss gekommen dass die Kardinalit der Abb. a*b sein muss!
zu b) und c): Ich weiß immer noch nicht was ich machen soll bzw wie ch anfangen soll??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]