matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeMächtigkeit bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Mächtigkeit bestimmen
Mächtigkeit bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:21 Sa 24.05.2014
Autor: Avinu

Aufgabe 1
Bestimmen Sie die Anzahl der folgenden Mengen:
[mm] Hom_\IF_{3}(\IF_{3}^4, \IF_{3}^3). [/mm]

(Wir haben [mm] Hom_K(V,W) [/mm] definiert als die Menge aller K-Vektorraumhomomorphismen von V nach W.)



Aufgabe 2
Sol(A,0)  für ein A [mm] \in \IF_{3}^{3\times4} [/mm] mit rk A = 2



Aufgabe 3
{A [mm] \in \IF_{11}^{2\times2} [/mm] | A ist nicht invertierbar}



Aufgabe 4
{U [mm] \leq \IF_{3}^5 [/mm] | [mm] dim_{\IF_{3}} [/mm] U = 3}



Hallo zusammen,

ich habe einige Aufgaben, wo ich die Mächtigkeit bestimmter Mengen bestimmen soll. Ich habe jetzt erst mal alle hier eingestellt, würde aber zu Beginn erst mal nur die erste (mit den Homomorphismen) besprechen wollen.

Ich habe mir überlegt, dass [mm] |\IF_{3}^4| [/mm] = 81 und [mm] |\IF_{3}^3| [/mm] = 27 sein müsste. Dann müsste es zunächst mal 27^81 Abbildungen geben. Für einen Vektorraumhomomorphismus muss das Nullelement aber auf das Nullelement abgebildet werden. Also bleiben nur noch 27^80 Abbildungen übrig. Aber wie ich aus den übrigen Abbildungen die herausfiltern soll, die die verbleibenden Eigenschaften eines Vektorraumhomomorphismus erfüllen weiß ich nicht.

Gibt es irgendeine andere Eigenschaft bzw irgendeine anderen Zusammenhang, den man hier ausnutzen muss?

Vielen Dank un schöne Grüße,
Avinu

        
Bezug
Mächtigkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Sa 24.05.2014
Autor: Teufel

Hi!

Zur a):
[mm] $\text{Hom}_K(V,W)$ [/mm] ist ein $K$-Vektorraum der Dimension [mm] $\text{dim}(V)\text{dim}(W)$. [/mm]

Für deinen Fall also ein [mm] $\mathbb{F}_3$-Vektorraum [/mm] der Dimension 12. Wie viele verschiedene Vektoren kannst du über diesem Körper aus 12 Basiselementen bilden? Das ist dann deine Antwort.

Bezug
                
Bezug
Mächtigkeit bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 25.05.2014
Autor: Avinu

Hallo,

danke für deine Antwort.

Wenn es 12 Basiselemente gibt, kann ich jedes mit einem Element aus [mm] \IF_3 [/mm] multiplizieren. [mm] \IF_3 [/mm] hat drei Elemente. Also [mm] 12^3? [/mm]

Was ich noch nicht ganz verstanden habe: Wie kann es im [mm] \IF_3 [/mm] eine Basis mit 12 Elementen geben? [mm] \IF_3 [/mm] hat doch nur 3 Elemente.

Vielen Dank für die Hilfe und schöne Grüße,
Avinu

Bezug
                        
Bezug
Mächtigkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 26.05.2014
Autor: Teufel

Hi!

Ja, fast. Die Antwort wäre [mm] 3^{12}, [/mm] denn du kannst das erste Basiselement mit 3 möglichen Werten multiplizieren, dann das zweite, das dritte, ... das zwölfte Basiselement mit 3 möglichen Werten multiplizieren. Daher gibt es [mm] 3*3*3*...*3=3^{12} [/mm] Möglichkeiten.

Bezug
        
Bezug
Mächtigkeit bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:48 So 25.05.2014
Autor: Avinu

Hallo nochmal,

hier mein Ansatz zur Aufgabe 2:
Wenn rk A = 2 ist, dann werde ich beim Lösen des LGS per Gauss eine Nullzeile erhalten. Das heißt doch dann, dass eine der vier Variablen frei gewählt werden kann. Das LGS war  aber ohnehin schon unter bestimmt, sodass insgesamt 2 der 4 Variablen frei gewählt werden können. Jede der 2 Variablen kann, da wir im [mm] \IF_3 [/mm] sind, 3 verschiedene Werte annehmen. Also ist die Mächtigkeit der Menge [mm] 3^2? [/mm]

Und zur dritten Aufgabe:
Eine Matrix ist invertierbar, wenn alle ihre Spalten (Zeilen) linear unabhängig sind. Das heißt es gibt hier in [mm] \IF_11^{2\times2} [/mm] doch [mm] 11^2 [/mm] verschiedene Spalten/Zeilen. Jede dieser Spalten/Zeilen hat 11 Vielfache. Also müsste die Mächtigkeit hier [mm] 11^3 [/mm] sein?

Bei der vierten Aufgabe fehlt mir wieder so ein bisschen der Ansatz. Ich müsste ja überlegen, wie viele Möglichkeiten gibt es einen UVR mit drei Basiselementen zu bilden. Das müsste ja auf jeden Fall schon mal der [mm] \IF_3^3 [/mm] sein. Aber da gibt es doch noch mehr, oder?

Bezug
                
Bezug
Mächtigkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mo 26.05.2014
Autor: Teufel

Hi!

Bei der 2.verstehe ich die Schreibweise mit dem Sol nichtl.

Zur 3)
Stimmt fast, aber wenn die erste Spalte (0,0) ist, dann bekommst du mehr als 11 Möglichkeiten für die 2. Spalte, sodass A nicht invertierbar ist, nämlich alle [mm] 11^2 [/mm] Spalten. Also hast du [mm] \underbrace{11^2}_{\text{erste Spalte 0}}+\underbrace{(11^2-1)*11}_{\text{erste Spalte ungleich 0}}=11^3+11^2-11 [/mm] Möglichkeiten.

Bei der 4 muss ich noch schauen, habe leider gerade keine Zeit mehr.

Bezug
                        
Bezug
Mächtigkeit bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Mo 26.05.2014
Autor: Avinu

Hallo,

schonmal vielen Dank für deine Antworten!

Wir haben definiert: Sol(A,b) := {x [mm] \in K^{n\times1} [/mm] | Ax = b}, also als die Lösungsmenge des LGS zur erweiternet Koeffizientenmatrix (A|b).

Viele Grüße,
Avinu

Bezug
                                
Bezug
Mächtigkeit bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:01 Di 27.05.2014
Autor: Teufel

Ah ok! Ja, ergibt Sinn. ;)

Also gilt ja Sol(A,0)=ker(A). Nun gilt $dim(ker(A))=2$ nach einer der vielen Dimensionsformeln [mm] ($f:V\rightarrow [/mm] W$ linear [mm] \Rightarrow [/mm] dim(V)=dim(ker(f))+rg(f)). Was bedeutet das dann für die Anzahl der Elemente in ker(A)?

Bezug
                
Bezug
Mächtigkeit bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 27.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Mächtigkeit bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 27.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]