matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMWS der Integralrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - MWS der Integralrechnung
MWS der Integralrechnung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MWS der Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Mo 10.09.2007
Autor: rambazambarainer

Aufgabe
Man gebe eine integrierbare Funktion f und ein Intervall [a,b] an, so dass der Mittelwertsatz nicht erfüllt ist, also dass es kein [mm] \varepsilon \in [/mm] ]a,b[ mit

[mm] f(\varepsilon)=\bruch{1}{b-a}\integral_{a}^{b}{f(x) dx} [/mm]

gibt.

Juten Tach!

Also, ich kann mir das nicht so recht vorstellen. Die Voraussetzung damit eine Funktion integrierbar ist, ist dass sie stückweise stetig ist, oder?
Und der Mittelwertsatz gilt für eine stetige Funktion...
Das steht für mich im Widerspruch zur Aufgabe...

Über einen Tipp würde ich mich sehr freuen :)

Gruß Rainer

        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mo 10.09.2007
Autor: Somebody


> Man gebe eine integrierbare Funktion f und ein Intervall
> [a,b] an, so dass der Mittelwertsatz nicht erfüllt ist,
> also dass es kein [mm]\varepsilon \in[/mm] ]a,b[ mit
>  
> [mm]f(\varepsilon)=\bruch{1}{b-a}\integral_{a}^{b}{f(x) dx}[/mm]
>  
> gibt.
>  Juten Tach!
>  
> Also, ich kann mir das nicht so recht vorstellen. Die
> Voraussetzung damit eine Funktion integrierbar ist, ist
> dass sie stückweise stetig ist, oder?

Jedenfalls genügt diese Voraussetzung für Integrierbarkeit.

>  Und der Mittelwertsatz gilt für eine stetige Funktion...

Nein. Man hätte nur einen Widerspruch, wenn verlangt würde, eine stetige Funktion (statt nur eine integrierbare) anzugeben, für die der Mittelwertsatz der Integralrechnung nicht gilt. - Dies wäre dann in der Tat gar nicht möglich...

>  Das steht für mich im Widerspruch zur Aufgabe...

Du musst einfach schauen, dass Du eine integrierbare aber nicht stetige (also etwa eine bloss stückweise stetige) Funktion findest, die den Mittelwert [mm] $\frac{1}{b-a}\int_a^b f(x)\; [/mm] dx$ im Intervall $[a;b]$ nicht annimmt.

Betrachte etwa

[mm]f(x)=\begin{cases}0 & \text{falls } x \leq 0\\ 1 &\text{sonst}\end{cases}[/mm]

und das Integrationsintervall $[a;b] := [-1;+1]$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]