matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLp-Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Lp-Norm
Lp-Norm < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lp-Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 10.01.2011
Autor: T_sleeper

Aufgabe
Die [mm] L^{p}-Norm [/mm] ist definiert [mm] ||u||_{L^{p}}=(\int_{\Omega}|u(x)|^{p}d(x))^{1/p}. [/mm] Warum gilt dann für p=2: [mm] ||u||_{L^{2}}=\int_{\Omega}|u(x)|^{2}d(x)? [/mm]

Hallo,

ich sehe es doch richtig, dass das die Definitionen der [mm] L^{p}-\mbox{Normen} [/mm] sind oder? Aber wenn man da für p=2 einsetzt, dass steht da doch [mm] (\int_{\Omega}|u(x)|^{2}d(x))^{1/2}. [/mm] Wieso ist wird das 1/2 im Exponenten dann überall weggelassen? Hat die eine Definition nix mit der anderen zu tun? Wäre ja Quatsch...

        
Bezug
Lp-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 10.01.2011
Autor: felixf

Moin!

> Die [mm]L^{p}-Norm[/mm] ist definiert
> [mm]||u||_{L^{p}}=(\int_{\Omega}|u(x)|^{p}d(x))^{1/p}.[/mm] Warum

Das ist die normale Definition, ja. Auch fuer $p = 2$.

> gilt dann für p=2:
> [mm]||u||_{L^{2}}=\int_{\Omega}|u(x)|^{2}d(x)?[/mm]

Wer definiert es denn so? Das habe ich wirklich noch nirgendwo gesehen.

> ich sehe es doch richtig, dass das die Definitionen der
> [mm]L^{p}-\mbox{Normen}[/mm] sind oder? Aber wenn man da für p=2
> einsetzt, dass steht da doch
> [mm](\int_{\Omega}|u(x)|^{2}d(x))^{1/2}.[/mm] Wieso ist wird das 1/2
> im Exponenten dann überall weggelassen?

Was heisst ueberall? Wo wird das weggelassen? Ich habe das wirklich noch nirgendwo gesehen!

Gib mal konkrete Beispiele, wo es weggelassen wird.

LG Felix


Bezug
        
Bezug
Lp-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Di 11.01.2011
Autor: fred97

Ich kann mich Felix nur anschließen. Vielleicht hast Du eine kleine 2 überlesen:

               $ [mm] ||u||_{L^{2}}^2=\int_{\Omega}|u(x)|^{2}d(x) [/mm] $

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]