matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikLotto- und Produktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Lotto- und Produktregel
Lotto- und Produktregel < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotto- und Produktregel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:22 Di 02.11.2010
Autor: Bolek

Hallo,

ich versuche folgende Aufgabe zu lösen:

Ein Kartenstapel besteht aus 5 weißen und 7 schwarzen Karten.

a) Es werden 4 Karten ohne Zurücklegen gezogen. Berechne die Wahrscheinlichkeit der Ereignisse.

A:Alle Karten sind weiß
B:Genau zwei Karten sind weiß

b) Alle Karten werden nacheinander ohne Zurücklegen gezogen.

Mit welcher Wahrscheinlichkeit erhält man zuerst alle Karten der eine Farbe und dann die Karten der anderen Farbe?

c) Es werden 5 Karten mit einem Griff gezogen Mit welcher Wahrscheinlichkeit sind genau  3 Karten schwarz?

Bei a)


Bei A würde ich so vorgehen

P(4 Karten weiß)= $ [mm] \frac{\vektor{5 \\ 4}\cdot\vektor{7 \\ 0}}{\vektor{12 \\ 4}} [/mm] $

Bei B:
$ [mm] \frac{\vektor{5 \\ 2}\cdot\vektor{7 \\ 2}}{\vektor{12 \\ 4}} [/mm] $

Bei b und c fehlt mir der Ansatz. Ich dachte zuerst bei b:
b)$ [mm] \frac{\vektor{12 \\ 5}\cdot\vektor{12 \\ 7}}{\vektor{12 \\ 12}} [/mm] $





        
Bezug
Lotto- und Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Di 02.11.2010
Autor: glie


> Hallo,

Hallo,

>  
> ich versuche folgende Aufgabe zu lösen:
>  
> Ein Kartenstapel besteht aus 5 weißen und 7 schwarzen
> Karten.
>  
> a) Es werden 4 Karten ohne Zurücklegen gezogen. Berechne
> die Wahrscheinlichkeit der Ereignisse.
>  
> A:Alle Karten sind weiß
>  B:Genau zwei Karten sind weiß
>  
> b) Alle Karten werden nacheinander ohne Zurücklegen
> gezogen.
>  
> Mit welcher Wahrscheinlichkeit erhält man zuerst alle
> Karten der eine Farbe und dann die Karten der anderen
> Farbe?
>  
> c) Es werden 5 Karten mit einem Griff gezogen Mit welcher
> Wahrscheinlichkeit sind genau  3 Karten schwarz?
>  
> Bei a)
>  
>
> Bei A würde ich so vorgehen
>  
> P(4 Karten weiß)= [mm]\frac{\vektor{5 \\ 4}\cdot\vektor{7 \\ 0}}{\vektor{12 \\ 4}}[/mm]
>  
> Bei B:
>  [mm]\frac{\vektor{5 \\ 2}\cdot\vektor{7 \\ 2}}{\vektor{12 \\ 4}}[/mm]

[ok] Das passt so.

>  
> Bei b und c fehlt mir der Ansatz. Ich dachte zuerst bei b:
>  b)[mm] \frac{\vektor{12 \\ 5}\cdot\vektor{12 \\ 7}}{\vektor{12 \\ 12}}[/mm]

[notok] Dass das nicht stimmen kann, ist sehr leicht einzusehen, da kommt 627264 heraus, das kann nie und nimmer eine Wahrscheinlichkeit sein.

Das ganze geht ja nur auf 2 Arten, entweder du ziehst

WWWWWSSSSSSS

oder

SSSSSSSWWWWW

Jetzt ist halt die Frage, wieviele Möglichkeiten es insgesamt gibt, wenn ich alle 12 Karten nacheinander ziehe, das sind

[mm] $\vektor{12 \\ 5}\cdot \vektor{7 \\ 7}$ [/mm]
(Verteile erst die 5 weissen Karten auf die 12 Plätze, dann die sieben schwarzen auf die verbleibenden sieben Plätze)

Die gesuchte Wahrscheinlichkeit ist also:

[mm] $\bruch{2}{\vektor{12 \\ 5}\cdot \vektor{7 \\ 7}}$ [/mm]



Die Aufgabe c) kannst du doch genauso lösen wie die a)

Gruß Glie

>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]