matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenLotgerade erstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Lotgerade erstellen
Lotgerade erstellen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotgerade erstellen: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:30 Mi 09.06.2010
Autor: Limone81

Aufgabe
Konstruiere zwei Geraden die senkrecht zur Gerade g: [mm] \vektor{3 \\ -1 \\ 7} [/mm] + t * [mm] \vektor{2 \\ -2 \\ 1} [/mm] sind und durch den Punkt P (2/0/1) gehen.

hallo, wie kann ich hier den Anfang machen ich habe nur die Idee, dass man zwei punkte der Geraden g suche und diese die Ortsvektoren der gescuhten Geraden sind und der Punkt durch den die Gerade gehen soll der Richtungsvektor ist also
für t=1 wäre der Punkt Q (5 \ -3 \ 8) auf der Geraden g und

h: [mm] \vektor{5 \\ -3 \\ 8} [/mm] + s * [mm] \vektor{2 \\ -2 \\ 1} [/mm]

ist der Ansatz dennüberhaupt richtig und vor allem ist die Gerade dann überhaupt senkrecht zu g? das glaub ich eher nicht. Bin für jede Hifle dankbar!

        
Bezug
Lotgerade erstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 09.06.2010
Autor: M.Rex

Hallo

Da die neuen Gerade [mm] g:\vec{x}=\vec{a}+\lambda*\vec{u} [/mm] ja durch P gehen sollen, kannst du als Stützpunkt den Punkt P selber nehmen.

Jetzt musst du nur noch einen "Verbindungsvektor" zwischen P und einem beliebigen Punkt R auf der gegebenen Gerade finden, also:

[mm] \overrightarrow{PR} [/mm]
[mm] =\vektor{3+2t\\-1-2t\\7+t}-\vektor{2\\0\\1} [/mm]
[mm] =\vektor{1+2t\\-1-2t\\6+t} [/mm]

Diesen Vektor kannst du jetzt als Richtungsvektor der neuen Gearden nutzen, also:

[mm] g:\vec{x}=\vektor{2\\0\\1}+\lambda*\vektor{1+2t\\-1-2t\\6+t} [/mm]

Jetzt musst du das t nur noch so bestimmen, dass
[mm] \vektor{1+2t\\-1-2t\\6+t}\perp\vektor{2\\-2\\1} [/mm]

Marius

Bezug
                
Bezug
Lotgerade erstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Mi 09.06.2010
Autor: Limone81

ok danke erstmal wenn ich das lot der beiden vektoren bilde was muss ich den da beachten? ich muss ja zwei graden erstellen, daher weiß ich jetzt nicht was es zu beachten gibt und ob auch beide graden den punkt als stützvektor haben ohne dass diese identisch sind?!

Bezug
                        
Bezug
Lotgerade erstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mi 09.06.2010
Autor: chrisno

Hallo Limone81

wie Du mitbekommst, gibt es hier ein kleine Diskussion. Bitte prüfe, ob Du die Aufgabe richtig wiedergegeben hast. Wenn das so ist, dann hat Marius aufgeschrieben, wie Du zum Ziel kommst. Nun musst Du also nur noch sicherstellen, dass die beiden Vektoren senkrecht zu einander stehen. Das machst Du mit dem Skalarprodukt, das in dem Fall gerade zu Null wird.
Dann überlege Dir: Du fällst von einem Punkt das Lot auf eine Gerade. Gibt es da noch ein zweites Lot?

Falls P doch auf der Gerade liegt, stellt sich das Ganze anders da. Dann geht es wie von Al C. beschrieben weiter.

Bezug
        
Bezug
Lotgerade erstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 09.06.2010
Autor: Al-Chwarizmi


> Konstruiere zwei Geraden die senkrecht zur Gerade g:
> [mm]\vektor{3 \\ -1 \\ 7}[/mm] + t * [mm]\vektor{2 \\ -2 \\ 1}[/mm] sind und
> durch den Punkt P (2/0/1) gehen.


Hallo Limone81,

Zur Lösung der Aufgabe brauchst du nur den Punkt P
(als Stützvektor) und dann zwei nicht kollineare Rich-
tungsvektoren, welche zum Richtungsvektor der gegebenen
Geraden g normal stehen.

Solche zu [mm] \vektor{2 \\ -2 \\ 1} [/mm]  normalen Vektoren zu finden ist sehr
einfach. Man hat dabei eine große Wahlfreiheit und muss
nur dafür sorgen, dass das Skalarprodukt mit dem gege-
benen Vektor verschwindet.


LG     Al-Chw.

Bezug
                
Bezug
Lotgerade erstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Mi 09.06.2010
Autor: chrisno

Hallo Al,

P liegt nicht auf der Geraden. Es geht darum, von P das Lot auf die Gerade zu fällen und festzustellen, dass es nur ein Lot gibt. Denke ich zumindest.

Bezug
                        
Bezug
Lotgerade erstellen: Widerspruch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Mi 09.06.2010
Autor: statler

Hi!

> P liegt nicht auf der Geraden. Es geht darum, von P das Lot
> auf die Gerade zu fällen und festzustellen, dass es nur
> ein Lot gibt. Denke ich zumindest.

Das denke ich überhaupt nicht, ich nehme den Aufgabentext wörtlich.

Gruß
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]