matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikLorenztransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "HochschulPhysik" - Lorenztransformation
Lorenztransformation < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lorenztransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Mo 11.10.2010
Autor: berndbrot

Hallo,

   hab eigentlich nur eine Frage zu dem Ansatz der Lorenztransformation. Auf der Seite "http://www.einsteins-erben.de/lorentztrafos.php?men=rel" wird von dem Ansatz [mm] x'=a_{11}x+a_{12}t+a_{13} [/mm] (steht ziemlich genau in der Mitte)ausgegangen. Wo kommt dieser Ansatz her??? Hoffe mir kann jemand helfen. Danke!

        
Bezug
Lorenztransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mo 11.10.2010
Autor: Kroni

Hi,

der Ansatz kommt daher, weil man fordert, dass die Lorentz-Transformationen lineare Transformationen sind, und dann ist das der allgemeinste Ansatz, den man waehlen kann.

Linear deshalb, damit das Superpositionsprinzip zB wieder rauskommt, die andere Begruedung waere, dass man sonst 'beschleunigte' Bezugssysteme haben will, verstoesst dann aber gegen das Postulat, dass sich alle Bezugssysteme gleichfoermig gegeneinander bewegen.

LG

Kroni


Bezug
                
Bezug
Lorenztransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mo 11.10.2010
Autor: berndbrot

Danke dir!

Bezug
                
Bezug
Lorenztransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Mo 11.10.2010
Autor: berndbrot

Ok, habs doch nicht so ganz gerafft. Ich versteh nicht wie man darauf kommt, dass das ausgerechnet in der Form mit dem x und t da steht... Gibts da vielleicht ne nachvollziehbare Herleitung? Finde online nix vernünftiges :(

Gruß

Bezug
                        
Bezug
Lorenztransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 11.10.2010
Autor: Kroni

Hi,

wir wissen, dass sich Raum und Zeit, also in einer Raumdimension nur $x$ linear transformieren muessen. D.h., dass $x'$ nun eine Funktion der ungestrichenen Zeit $t$ und des ungestrichenen $x$ ist, also $x'=x'(x,t)$.

Nun wissen wir aber, dass die Trafo linear sein soll in $x$ und in $t$. Dann bleibt uns, wie bei einer anderen linearen Funktion auch, nichts anderes uebrig, als erstmal

$x'(x,t) = ax + bt + c$ hinzuschreiben, genau  so, wie man es auch machen wuerde, wenn man weiss, dass $y$ und $x$ linear voneinander abhaengen, dann schreibt man ja auch $y(x) = mx+n$.

Dass hier [mm] $a_{11}$, $a_{12}$ [/mm] und [mm] $a_{13}$ [/mm] als Koeffizienten vorkommen, hat erstmal keine Bedeutung, ist nur dann am Ende schoener, wenn man diese Koeffizienten in eine Matrix packen kann.

Also, in kurz:

Das, was da steht, heisst nichts anderes, als dass $x'$ von $x$ und $t$ in lineare Weise abhaengt, sprich, nur von $t$ und $x$, und nicht von [mm] $x^2$ [/mm] oder [mm] $t^3$ [/mm] oder sonst irgendeine Potenz von $x$ oder $t$.

LG

Kroni


Bezug
                                
Bezug
Lorenztransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Mo 11.10.2010
Autor: berndbrot

Ok, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]