matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLokale Extrema bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Lokale Extrema bestimmen
Lokale Extrema bestimmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokale Extrema bestimmen: Nicht sicher ob richtig ....
Status: (Frage) beantwortet Status 
Datum: 22:20 Fr 27.02.2009
Autor: Tobias2k

Aufgabe
Bestimmen Sie (lokale) Extrema der Funktion:

[mm] f(x)=x^2*e^{-x} [/mm]

Notwendige Bedingung für einen Extremwert an der Stelle
f'(x)=0


Erste Ableitung der Funktion bestimmen.
[mm] u=x^2==>u'=2x [/mm]
[mm] v=e^{-x} [/mm] ==> [mm] v'=-e^{-x} [/mm]

[mm] f'(x)=2x*e^{-x}-e^{-x}*x^2 [/mm]


[mm] e^{-x} [/mm] ausklammern.

[mm] f'(x)=e^{-x}(2x*1-1*x^2) [/mm]
[mm] f'(x)=e^{-x}(2x-x^2) [/mm]

f'(x)=0
[mm] e^{-x}(2x-x^2 [/mm] )=0

[mm] e^{-x} [/mm] kann niemals 0 werden. Sollte der Wert in der Klammer 0 werden ist das Ergebnis auch gleich 0.

[mm] (2x-x^2 [/mm] )=0
[mm] 2x=x^2 [/mm]
2=x



Zweite Ableitung der Funktion bestimmen.

[mm] f'(x)=e^{-x}(2x-x^2) [/mm]

[mm] u=2x-x^2==>u'=2-2x [/mm]
[mm] v=e^{-x}==>v'=-e^{-x} [/mm]

[mm] f''(x)=-e^{-x}*2x-x^2+2-2x*e^{-x} [/mm]
[mm] f''(x)=e^{-x}*(-1*2x-x^2+2-2x*1) [/mm]
[mm] f''(x)=e^{-x}*(-2x+x^2+2-2x) [/mm]
[mm] f''(x)=e^{-x}*(-4x+x^2+2) [/mm]


Hinreichende Bedingung für Extremwert an der Stelle x:
f''(x) >0 Minimum an x
f''(x) <0 Maximum an x

[mm] f''(2)=e^{-2}*(-4*2+2^2+2) [/mm]
f''(2)=-0,27


Maximum bei (2|0)

Irgendwie sieht es so aus als hätte ich einen Fehler gemacht? Seht ihr evtl etwas?

MFG Tobias


        
Bezug
Lokale Extrema bestimmen: Lösung unterschlagen
Status: (Antwort) fertig Status 
Datum: 22:32 Fr 27.02.2009
Autor: Loddar

Hallo Tobias!


> Erste Ableitung der Funktion bestimmen.
>  
> [mm]f'(x)=e^{-x}(2x-x^2)[/mm]

[ok]

  

> f'(x)=0
> [mm]e^{-x}(2x-x^2[/mm] )=0
>  
> [mm]e^{-x}[/mm] kann niemals 0 werden. Sollte der Wert in der
> Klammer 0 werden ist das Ergebnis auch gleich 0.

[ok]

  

> [mm](2x-x^2[/mm] )=0
> [mm]2x=x^2[/mm]
> 2=x

[stop]
Hier hast Du eine weitere Lösung mit $x \ = \ 0$ unterschlagen, indem Du (ohne nachzudenken?) durch $x_$ geteilt hast.


> Zweite Ableitung der Funktion bestimmen.
>  
> [mm]f'(x)=e^{-x}(2x-x^2)[/mm]
>  
> [mm]u=2x-x^2==>u'=2-2x[/mm]
> [mm]v=e^{-x}==>v'=-e^{-x}[/mm]
>  
> [mm]f''(x)=-e^{-x}*2x-x^2+2-2x*e^{-x}[/mm]

Klammern setzen!!


> [mm]f''(x)=e^{-x}*(-1*2x-x^2+2-2x*1)[/mm]

Auch hier fehlen Klammern!


> [mm]f''(x)=e^{-x}*(-2x+x^2+2-2x)[/mm]
> [mm]f''(x)=e^{-x}*(-4x+x^2+2)[/mm]

Erstaunlicherweise stimmt die 2. Ableitung dann doch.



> [mm]f''(2)=e^{-2}*(-4*2+2^2+2)[/mm]
> f''(2)=-0,27

[ok]


> Maximum bei (2|0)

[notok] Wie kommst Du auf diesen Funktionswert?

  
Gruß
Loddar


Bezug
                
Bezug
Lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Fr 27.02.2009
Autor: Tobias2k


> Hallo Tobias!
>  
>
> > Erste Ableitung der Funktion bestimmen.
>  >  
> > [mm]f'(x)=e^{-x}(2x-x^2)[/mm]
>  
> [ok]
>  
>
> > f'(x)=0
>  > [mm]e^{-x}(2x-x^2[/mm] )=0

>  >  
> > [mm]e^{-x}[/mm] kann niemals 0 werden. Sollte der Wert in der
> > Klammer 0 werden ist das Ergebnis auch gleich 0.
>  
> [ok]
>  
>
> > [mm](2x-x^2[/mm] )=0
>  > [mm]2x=x^2[/mm]

>  > 2=x

>  
> [stop]
>  Hier hast Du eine weitere Lösung mit [mm]x \ = \ 0[/mm]
> unterschlagen, indem Du (ohne nachzudenken?) durch [mm]x_[/mm]
> geteilt hast.
>  
>
> > Zweite Ableitung der Funktion bestimmen.
>  >  
> > [mm]f'(x)=e^{-x}(2x-x^2)[/mm]
>  >  
> > [mm]u=2x-x^2==>u'=2-2x[/mm]
>  > [mm]v=e^{-x}==>v'=-e^{-x}[/mm]

>  >  
> > [mm]f''(x)=-e^{-x}*2x-x^2+2-2x*e^{-x}[/mm]
>  
> Klammern setzen!!
>  
>
> > [mm]f''(x)=e^{-x}*(-1*2x-x^2+2-2x*1)[/mm]
>  
> Auch hier fehlen Klammern!
>  
>
> > [mm]f''(x)=e^{-x}*(-2x+x^2+2-2x)[/mm]
>  > [mm]f''(x)=e^{-x}*(-4x+x^2+2)[/mm]

>  
> Erstaunlicherweise stimmt die 2. Ableitung dann doch.
>  
>
>
> > [mm]f''(2)=e^{-2}*(-4*2+2^2+2)[/mm]
>  > f''(2)=-0,27

>  
> [ok]
>  
>
> > Maximum bei (2|0)
>  
> [notok] Wie kommst Du auf diesen Funktionswert?
>  
>
> Gruß
>  Loddar
>  

Hallo Loddar,

Erstmal Danke für deine Antworten!

Stimmt Klammern hätte ich setzen müssen :-)

Muss ich jetzt noch die 0 die in zweite Ableitung einsetzen?

Wie komme ich genau an die Punkte des Maximums?

LG Tobias

Bezug
                        
Bezug
Lokale Extrema bestimmen: einsetzen
Status: (Antwort) fertig Status 
Datum: 22:54 Fr 27.02.2009
Autor: Loddar

Hallo Tobias!


> Muss ich jetzt noch die 0 die in zweite Ableitung einsetzen?

[ok] Ja.

  

> Wie komme ich genau an die Punkte des Maximums?

Du meinst den Funktionswert? Setze den x-Wert $x \ = \ 2$ (und auch $x \ = \ 0$) in die Ausgangsfunktion $f(x) \ = \ [mm] x^2*e^{-x}$ [/mm] ein.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]