matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikLogik Stufe2:Löwenheim&Skolem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Logik" - Logik Stufe2:Löwenheim&Skolem
Logik Stufe2:Löwenheim&Skolem < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logik Stufe2:Löwenheim&Skolem: Beweisidee
Status: (Frage) überfällig Status 
Datum: 21:38 Sa 08.05.2010
Autor: Esperlein

Aufgabe
Zeigen Sie, dass der Satz von Löwenheim und Skolem in der Logik zweiter Stufe nicht gilt.

Hallo zusammen, seit ca. 3 Stunden versuche ich den Beweis ausführlich zu führen, aber es hackt an einer Stelle. Der Satz von Löwenheim und Skolem lautet wie folgt:
Jede höchstens abzählbare Menge von Formeln, die erfüllbar ist, ist erfüllbar über einer höchstens abzählbaren Menge. (d.h. sie besitzt ein Modell, dessen Träger höchstens abzählbar ist.)

Beweisidee: Irgendwie logisch: Wir konstruieren uns einen Satz [mm] \varphi [/mm] ,der nur dann erfüllbar ist, wenn der Träger überabzählbar ist.

Um das zu machen, konstruieren wir einen Satz [mm]\alpha[/mm], der genau dann erfüllbar ist, wenn der Träger höchstens abzählbar ist und setzen dann [mm]\varphi =\neg \alpha [/mm].

Zur Konstruktion von alpha:
Es gilt, dass eine Menge A genau dann höchstens abzählbar ist, wenn es auf A eine Ordnungsrelation gibt, bei der jedes Element nur endlich viele Vorgänger hat.

Mein Ansatz: Sei Y eine zweistellige Relationsvariable.
[mm] \beta = \exists Y(\forall x \neg Yxx \wedge \forall x \forall y \forall z((Yxy \wedge Yyz) \to Yxz) \wedge \forall x \forall y(Yxy \vee x \equiv y \vee Yyx)[/mm]


[mm] \beta [/mm] definiert mir, dass eine Ordnungsrelation existieren muss. Jetzt brauche ich nur noch einen Satz, der mir sagt, dass jedes Element nur endlich viele Vorgänger hat.
Hier komme ich leider nicht weiter.

Vielen vielen Dank für eure Hilfe, eure Esper


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logik Stufe2:Löwenheim&Skolem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 11.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]