matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logaritmusgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Logaritmusgleichung
Logaritmusgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logaritmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 02.06.2006
Autor: janaica

Aufgabe
Geben Sie alle Lösungen der Logarithmusgleichung an:
2 lgx = lg (9x - 20)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hy! Ich habe zwar einen Ansatz, komme aber nicht weiter:

2 lg(x) = lg(9x - 20)
[mm] lg(x^{2}) [/mm] = lg(9x -20)
[mm] x^{2} [/mm] - 9x - 20



        
Bezug
Logaritmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Fr 02.06.2006
Autor: cruemel

Hallo! Du hast doch eh schon die Hauptarbeit geleistet, wenn du alles auf eine seite bringst hast du doch nur noch die Gleichung:

[mm] x^{2}-9x+20=0 [/mm]

Und die kannst du doch sicher lösen, oder?

Bezug
                
Bezug
Logaritmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Fr 02.06.2006
Autor: janaica

Danke schonmal!

Ist es:
x = [mm] \wurzel{9x + 20} [/mm] ?

Mich irritiert in erster Linie: *ALLE Lösungen*

Bezug
                        
Bezug
Logaritmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Fr 02.06.2006
Autor: Herby

Hallo janaica,


und ein herzliches [willkommenmr]


Es liegt hier eine quadratische Funktion vor, die du mit Hilfe der MB p-q Formel lösen kannst. (du kannst auf MB p-q Formel klicken)

damit erhältst du "alle" Lösungen, nämlich insgesamt "zwei".


Du hattest dich aber mit einem Minus vertan, was cruemel richtig bemerkt hat.


Kommst du damit weiter?


Liebe Grüße
Herby

Bezug
                                
Bezug
Logaritmusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Fr 02.06.2006
Autor: janaica

Danke für´s *Willkommen heissen*!!!

(Ja, mein - sollte natürlich ein = sein!)

Nach einigem Hin & Her, ein neuer Versuch (Dank der Formel):

p=-9, q=20

[mm] x_{1} [/mm] = [mm] \bruch{9}{2} [/mm] + [mm] \wurzel-({\bruch{9}{2} })^{2}-20 [/mm]

[mm] x_{2} [/mm] = [mm] \bruch{9}{2} [/mm] - [mm] \wurzel-({\bruch{9}{2} })^{2}-20 [/mm]

also:

[mm] x_{1}= [/mm] 5
[mm] x_{2}= [/mm] 4



Bezug
                                        
Bezug
Logaritmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 02.06.2006
Autor: Funky24

hy..

..stimmt jetzt so...

nur so ein Tipp am Rande:
...solltest allerdings die Lösungsformel möglichst im Schlaf können, da du ohne sie die nächsten Jahre nicht weit kommst, und immer erst im Tafelwerk gucken schafft man nicht.. ;-)

Bezug
                                                
Bezug
Logaritmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Fr 02.06.2006
Autor: janaica

Vielen Dank an Euch für die Denkanstöße!!
(Werde mir die Formeln aneignen!)
Gruß!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]