matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmusfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Logarithmusfunktion
Logarithmusfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Sa 26.08.2006
Autor: Mueritz

Aufgabe
Gegeben sie die Funktion f(x) = [mm] x^2 \*(lnx-1) [/mm] , (x>0)
a) Wie lautet die Gleichung der Wendetangente?

Hallo,
ich habe bei dieser Aufgabe ein Problem mit der Berechnung des Wendepunktes. Hier sind meine Ansätze:
[mm] f'(x)=2x\*(lnx-1)+x [/mm] = [mm] 2x\*lnx-x [/mm]
[mm] f''(x)=2\*lnx+2-x [/mm]
f'''(x)=lnx+1

um den Wendepunkt zu bestimmen muss ich f''(x) = 0 setzen:
[mm] 2\*lnx+2-x=0 [/mm]
[mm] -2=2\*lnx-x [/mm]
Hier ist jetzt mein Problem. Wie gehe ich weiter vor, um für x einen Wert zu bekommen mit dem ich weiterrechnen kann? Der Rest der Aufgabe ist dann kein Problem mehr.

schon mal vielen Dank für die Hilfe
Müritz


        
Bezug
Logarithmusfunktion: Fehler in Ableitung
Status: (Antwort) fertig Status 
Datum: 10:23 Sa 26.08.2006
Autor: Loddar

Hallo Müritz!


Da ist Dir bereits bei der 1. Ableitung ein Fehler unterlaufen...

Am besten, Du multipliziertst die Klammer zunächst aus:

$f(x) \ = \ [mm] x^2*\left[\ln(x)-1\right] [/mm] \ = \ [mm] x^2*\ln(x)-x^2$ [/mm]


Damit wird dann:   $f'(x) \ = \ [mm] 2x*\ln(x)+x^2*\bruch{1}{x}-2x [/mm] \ = \ [mm] 2x*\ln(x)-x$ [/mm]


Aber auch ohne Ausmultiplizieren solltest Du dieses Eregebnis erhalten:

$f'(x) \ = \ [mm] 2x*\left[\ln(x)-1\right]+x^2*\left[\bruch{1}{x}-0\right] [/mm] \ = \ [mm] 2x*\ln(x)-2x+x [/mm] \ = \ [mm] 2x*\ln(x)-x$ [/mm]


Wie lautet dann also die 2. Ableitung $f''(x)_$ ?


Gruß
Loddar


Bezug
                
Bezug
Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Sa 26.08.2006
Autor: Mueritz

Hi Loddar,

demnach müsste dann f''(x)=2*ln(x)+1 lauten. Dann erhalte ich:
f''(x)=0
[mm] x\approx0,607 [/mm]

oder?

vielen Dank!!!

Müritz

Bezug
                        
Bezug
Logarithmusfunktion: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 10:50 Sa 26.08.2006
Autor: Loddar

Hallo Müritz!


Das stimmt so! [ok]

Aber lieber genauer rechnen mit: [mm] $x_W [/mm] \ = \ [mm] e^{-\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{e}}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]