matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmusfunkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Logarithmusfunkt.
Logarithmusfunkt. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusfunkt.: Lösungsmengen
Status: (Frage) beantwortet Status 
Datum: 17:01 Di 05.09.2006
Autor: MikeZZ

Aufgabe
Bestimme die Lösungsmenge für

[mm] 3^{x+1}=2\*3^{2x} [/mm]

und

[mm] 5^{x}=2\*7^{x-1} [/mm]

Hi,

ich habe hier diese beiden,oben genannten, Funktionen und ich schaffe es einfach nicht die Lösungsmenge zu errechnen. Habe vorher schon andere dieser art gerechnet, welche jedoch einfacher waren, da hinter dem Gleich nur eine Zahl Stand ohne x. Kann mir villeicht jemand von euch zu hand gehn?

Liebe Grüsse
Mike

        
Bezug
Logarithmusfunkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Di 05.09.2006
Autor: Bastiane

Hallo!

> Bestimme die Lösungsmenge für
>  
> [mm]3^{x+1}=2\*3^{2x}[/mm]
>  
> und
>  
> [mm]5^{x}=2\*7^{x-1}[/mm]
>  Hi,
>  
> ich habe hier diese beiden,oben genannten, Funktionen und
> ich schaffe es einfach nicht die Lösungsmenge zu errechnen.
> Habe vorher schon andere dieser art gerechnet, welche
> jedoch einfacher waren, da hinter dem Gleich nur eine Zahl
> Stand ohne x. Kann mir villeicht jemand von euch zu hand
> gehn?

Dann dividiere doch einfach durch [mm] 3^{2x} [/mm] bzw. [mm] 7^{x-1}, [/mm] dann steht auf der rechten Seite wieder nur eine Zahl. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Logarithmusfunkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 05.09.2006
Autor: MikeZZ

Hi!,

ja das habe ich auch versucht, jedoch schaffe ich es nicht die Funktion dann weiter zu berechnen. Wie kann ich da den log. anwenden?

Liebe Grüsse
Mike

Bezug
                        
Bezug
Logarithmusfunkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 05.09.2006
Autor: Zwerglein

Hi, Mike,

denk' auch an die Potenzgesetze!
So ist z.B.

[mm] 3^{x+1} [/mm] = [mm] 3*3^{x} [/mm]

[mm] 3^{2x} [/mm] = [mm] 9^{x} [/mm]

[mm] \bruch{3^{x}}{9^{x}} [/mm] = [mm] (\bruch{1}{3})^{x} [/mm]

[mm] 7^{x-1} [/mm] = [mm] 7^{-1}*7^{x} [/mm] = [mm] \bruch{1}{7}*7^{x} [/mm]

mfG!
Zwerglein

Bezug
                                
Bezug
Logarithmusfunkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mi 06.09.2006
Autor: MikeZZ

Sorry aber ich versteh es immer noch nich.. trotz eurer netten antworen. Könnt ihr nicht eine der Aufgaben in mehreren Schritten und einbeziehung des Logarithmus lösen? Das würde mir sehr helfen..

Liebe Grüsse
Mike

Bezug
                                        
Bezug
Logarithmusfunkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 06.09.2006
Autor: M.Rex

Hallo

Ich versuchs mal:

[mm] 3^{x+1}=2*3^{2x} [/mm]
[mm] \gdw \bruch{3^{x+1}}{3^{2x}} [/mm] = 2
[mm] \gdw 3^{x+1-2x} [/mm] = 2 (POTENZGESETZ)
Jetzt auf beiden seiten den [mm] log_{3} [/mm] anwenden.
[mm] \gdw [/mm] -x+1 = [mm] log_{3}2 [/mm]
...


Nun zur zweiten Aufgabe:

[mm] 5^{x}=2*7^{x-1} [/mm]
[mm] \gdw 5^{x} [/mm] = [mm] \bruch{2}{7} 7^{x} [/mm] (Potenzg., siehe Zwergleins Lösung)
[mm] \gdw \bruch{5^{x}}{7^{x}} [/mm] = [mm] \bruch{2}{7} [/mm]
[mm] \gdw (\bruch{5}{7})^{x} [/mm] = [mm] \bruch{2}{7} [/mm]
Jetzt wieder den [mm] log_{\bruch{5}{7}} [/mm] anwenden
[mm] \gdw [/mm] x = [mm] log_{\bruch{5}{7}}\bruch{2}{7}. [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]