matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Logarithmus
Logarithmus < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: Logarithmen
Status: (Frage) beantwortet Status 
Datum: 22:42 Do 29.11.2012
Autor: Chiba

Aufgabe
1. lg(x) + lg (2y)
2. loga(2u) - 2loga(u) + loga(u²) + loga(1/u)

Ansatz:
1. lg(x2y)
2. beim zweiten habe ich leider keine Ahnung.

a ist immer unten


Hallo,
Kann mir jemand bei diesen Aufgaben helfen und erklären, danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Do 29.11.2012
Autor: chrisno

Hallo,

> 1. lg(x) + lg (2y)

mit dem Formeleditor geht da einfach und wird schöner:
$lg(x) + lg(2y) = lg(2xy)$

>  2. loga(2u) - 2loga(u) + loga(u²) + loga(1/u)

[mm] $log_a(2u) [/mm] - [mm] 2log_a(u)+ log_a(u^2)+log_a(\bruch{1}{u})$ [/mm]

Das a darf Dich nicht irritieren. Eigentlich haben alle Logarithmen da ein a stehen. Bloß kürzt man das in speziellen Fällen ab. Nachdem Du die erste Aufgabe geschafft hast, wirst Du auch die zweite lösen.
Du hast die Logarithmen addiert und als Ergebnis den Logarithmus des Produkts hingeschrieben. Das klappt auch bei der zweiten Aufgabe. Zwei kleine Hürden gibt es. Da steht -2log... .
Naja, wenn + Multiplizieren bewirkt, dann muss Du bei - natürlich .....
Die 2 wirst Du auch ganz einfach los: [mm] $-2log_a(u) [/mm] = [mm] -log_a(u) -log_a(u)$. [/mm]
Dabei kannst Du direkt eine weitere Rechenregel für Logarithmen entdecken.


Bezug
                
Bezug
Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Do 29.11.2012
Autor: Chiba

Hallo mit dem Formeleditor wird es schlecht da ich am ipad bin.

Zu der 2ten Aufgabe:
[mm] Loga((2u/u^2) [/mm] * [mm] ((u^2 [/mm] * 1/u))> Hallo,

>  
> > 1. lg(x) + lg (2y)
>  mit dem Formeleditor geht da einfach und wird schöner:
>  [mm]lg(x) + lg(2y) = lg(2xy)[/mm]
>  >  2. loga(2u) - 2loga(u) +
> loga(u²) + loga(1/u)
>  [mm]log_a(2u) - 2log_a(u)+ log_a(u^2)+log_a(\bruch{1}{u})[/mm]
>  
> Das a darf Dich nicht irritieren. Eigentlich haben alle
> Logarithmen da ein a stehen. Bloß kürzt man das in
> speziellen Fällen ab. Nachdem Du die erste Aufgabe
> geschafft hast, wirst Du auch die zweite lösen.
>  Du hast die Logarithmen addiert und als Ergebnis den
> Logarithmus des Produkts hingeschrieben. Das klappt auch
> bei der zweiten Aufgabe. Zwei kleine Hürden gibt es. Da
> steht -2log... .
>  Naja, wenn + Multiplizieren bewirkt, dann muss Du bei -
> natürlich .....
>  Die 2 wirst Du auch ganz einfach los: [mm]-2log_a(u) = -log_a(u) -log_a(u)[/mm].
>  
> Dabei kannst Du direkt eine weitere Rechenregel für
> Logarithmen entdecken.
>  


Bezug
                        
Bezug
Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 29.11.2012
Autor: reverend

Hallo Chiba, [willkommenmr]

> Hallo mit dem Formeleditor wird es schlecht da ich am ipad
> bin.

Das ist Quatsch. Der funktioniert am ipad genauso gut wie an jedem anderen Rechner.

> Zu der 2ten Aufgabe:
>  [mm]Loga((2u/u^2)[/mm] * [mm]((u^2[/mm] * 1/u))

Schön, und weiter?
Das hier stimmt, aber willst Du jetzt jeden Rechenschritt einstellen?

Fass mal das Klammergemüse ordentlich zusammen, da bleibt ja nicht biel übrig.

Grüße
reverend

> Hallo,
>  >  
> > > 1. lg(x) + lg (2y)
>  >  mit dem Formeleditor geht da einfach und wird
> schöner:
>  >  [mm]lg(x) + lg(2y) = lg(2xy)[/mm]
>  >  >  2. loga(2u) - 2loga(u)
> +
> > loga(u²) + loga(1/u)
>  >  [mm]log_a(2u) - 2log_a(u)+ log_a(u^2)+log_a(\bruch{1}{u})[/mm]
>  
> >  

> > Das a darf Dich nicht irritieren. Eigentlich haben alle
> > Logarithmen da ein a stehen. Bloß kürzt man das in
> > speziellen Fällen ab. Nachdem Du die erste Aufgabe
> > geschafft hast, wirst Du auch die zweite lösen.
>  >  Du hast die Logarithmen addiert und als Ergebnis den
> > Logarithmus des Produkts hingeschrieben. Das klappt auch
> > bei der zweiten Aufgabe. Zwei kleine Hürden gibt es. Da
> > steht -2log... .
>  >  Naja, wenn + Multiplizieren bewirkt, dann muss Du bei -
> > natürlich .....
>  >  Die 2 wirst Du auch ganz einfach los: [mm]-2log_a(u) = -log_a(u) -log_a(u)[/mm].
>  
> >  

> > Dabei kannst Du direkt eine weitere Rechenregel für
> > Logarithmen entdecken.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]