matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Logarithmieren
Logarithmieren < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmieren: Aufgaben dazu ^^
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 22.02.2008
Autor: Masaky

Aufgabe
Drücke durch einen einzigen Logarithmus aus:

1/2 lg (p²+q²) - 3/2 lg(2pq)

  Moin,

noch eine Aufgabe für die ich zu doof bin

Aber wäre nett, wenn ihr mir helft, ist echt wichtig ;)




Drücke durch einen einzigen Logarithmus aus:



b.) 1/2 lg (p²+q²) - 3/2 lg(2pq)








Das geht doch irgendwie nicht!




Danke im Vorraus ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 22.02.2008
Autor: steppenhahn

Du musst die Logarithmus-Gesetze anwenden!

1. [mm] log_{a}\left(b\right) [/mm] + [mm] log_{a}\left(c\right) [/mm] = [mm] log_{a}\left(b*c\right) [/mm]
2. [mm] log_{a}\left(b\right) [/mm] - [mm] log_{a}\left(c\right) [/mm] = [mm] log_{a}\left(\bruch{b}{c}\right) [/mm]
3. [mm] log_{a}\left(b^{c}\right) [/mm] = [mm] c*log_{a}\left(b\right) [/mm]

[mm] \bruch{1}{2}*\lg\left(p^{2}+q^{2}\right) [/mm] - [mm] \bruch{3}{2}*\lg\left(2pq\right) [/mm]

Damit wir die Logarithmen zusammenfassen können, muss eines der beiden Dinge erfüllt sein:

1. Beide Logarithmen haben denselben Koeffzienten vor sich stehen, also z.B.
[mm] e*\lg\left(a\right)-e*\lg\left(b\right) [/mm]
Dann könnten wir diesen ausklammern und dem zweiten Logarithmus-Gesetz steht nichts mehr im Wege:
[mm] =e*\left(\lg\left(a\right)-\lg\left(b\right)\right) [/mm]
[mm] =e*\lg\left(\bruch{a}{b}\right) [/mm]

2. Beide Logarithmen haben denselben "Inhalt", das Argument ist gleich, also z:B.
[mm] a*\lg\left(e\right)-b*\lg\left(e\right) [/mm]
Dann können wir sie zusammenfassen, indem wir die beiden Koeffizienten davor voneinander abziehen (Wir klammern praktisch [mm] \lg\left(e\right) [/mm] aus):
[mm] =\left(a-b\right)*\ln\left(e\right) [/mm]

Bei deiner Beispielaufgabe ist zunächst keins von beiden erfüllt. Wenden wir jedoch das dritte Logarithmus-Gesetz auf beide Logarithmen an, erhalten wir Fall 1:

  [mm] \bruch{1}{2}*\lg\left(p^{2}+q^{2}\right) [/mm] - [mm] \bruch{3}{2}*\lg\left(2pq\right) [/mm]

= [mm] \lg\left(\left(p^{2}+q^{2}\right)^{\bruch{1}{2}}\right) [/mm] - [mm] \lg\left(\left(2pq\right)^{\bruch{3}{2}}\right) [/mm]

Nun können wir Vereinfachung Fall 1 anwenden:

= [mm] \lg\left(\bruch{\left(p^{2}+q^{2}\right)^{\bruch{1}{2}}}{\left(2pq\right)^{\bruch{3}{2}}}\right) [/mm]

Eine zweite Möglichkeit (die natürlich auf dasselbe hinausläuft):
Wir fassen den zweiten Koeffzienten als [mm] \bruch{3}{2} [/mm] = [mm] \bruch{1}{2}*3 [/mm] auf und bringen nur die 3 in den Logarithmus (mit Hilfe des 3. Logarithmus-Gesetzes)

  [mm] \bruch{1}{2}*\lg\left(p^{2}+q^{2}\right) [/mm] - [mm] \bruch{3}{2}*\lg\left(2pq\right) [/mm]

= [mm] \bruch{1}{2}*\lg\left(p^{2}+q^{2}\right) [/mm] - [mm] \bruch{1}{2}*3*\lg\left(2pq\right) [/mm]

= [mm] \bruch{1}{2}*\lg\left(p^{2}+q^{2}\right) [/mm] - [mm] \bruch{1}{2}*\lg\left(\left(2pq\right)^{3}\right) [/mm]

Nun können wir ebenfalls Fall 1 anwenden:

= [mm] \bruch{1}{2}*\left(\lg\left(p^{2}+q^{2}\right) - \lg\left(\left(2pq\right)^{3}\right)\right) [/mm]

= [mm] \bruch{1}{2}*\left(\lg\left(\bruch{p^{2}+q^{2}}{\left(2pq\right)^{3}\right)}\right) [/mm]

Falls alles in den Logarithmus soll, nun noch das [mm] \bruch{1}{2} [/mm] mit Hilfe des 3. Logarithmus-Gesetzes in den Logarithmus rein:

= [mm] \lg\left(\left(\bruch{p^{2}+q^{2}}{\left(2pq\right)^{3}}\right)^{\bruch{1}{2}}\right) [/mm]

Die Ausdrücke in den Logarithmen kann man noch vereinfachen, aber das überlasse ich dir :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]