matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesLogarithmen u.  Umformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Logarithmen u. Umformung
Logarithmen u. Umformung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen u. Umformung: Dekadischer Logarithmus
Status: (Frage) beantwortet Status 
Datum: 15:19 Mo 15.11.2004
Autor: fatrix

Hallo allerseits,

bin durch einen Freund auf dieses Forum aufmerksam gemacht worden u. finde es klasse, das es soetwas gibt... Nun ja, bereite mich z.Zt. auf eine Matheklausur vor und komme bei folgender Aufgabe einfach nicht weiter, bzw. habe die Lösung , kann ihr aber nicht folgen:

es geht um diese Gleichung, die wie folgt gelöst werden soll: (nicht lachen *fg*)

lg 4x + lg 2x + lg x = 6  [mm] \gdw 10^{lg4x+lg2x+lgx} [/mm] = [mm] 10^{6} \gdw 10^{lg6x}*10^{lg2x}*10^{lgx} [/mm] = [mm] 10^{6} \gdw 4x*2x*x=10^{6} [/mm]

Und genau bei der letzten Umformung liegt mein Problem; wieso darf plötzlich auf der linken Seite die Basis (also 10) weggelassen werden?

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. ;)






        
Bezug
Logarithmen u. Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 15.11.2004
Autor: chmul


> Hallo allerseits,

Hallo Fatrix,

> bin durch einen Freund auf dieses Forum aufmerksam gemacht
> worden u. finde es klasse, das es soetwas gibt... Nun ja,
> bereite mich z.Zt. auf eine Matheklausur vor und komme bei
> folgender Aufgabe einfach nicht weiter, bzw. habe die
> Lösung , kann ihr aber nicht folgen:
>  
> es geht um diese Gleichung, die wie folgt gelöst werden
> soll: (nicht lachen *fg*)
>  
> lg 4x + lg 2x + lg x = 6  [mm]\gdw 10^{lg4x+lg2x+lgx}[/mm] = [mm]10^{6} \gdw 10^{lg6x}*10^{lg2x}*10^{lgx}[/mm]
> = [mm]10^{6} \gdw 4x*2x*x=10^{6} [/mm]
>  
> Und genau bei der letzten Umformung liegt mein Problem;
> wieso darf plötzlich auf der linken Seite die Basis (also
> 10) weggelassen werden?

Nun, weglassen ist in diesem Sinne vielleicht das falsche Wort. Genau genommen hebt sich der lg mit 10^  auf.
Dies liegt an der Definition des lg:
[mm] lg{x} = log_{10}{x} [/mm]
d.h.: der dekatische Logarithmus ist der Logarithmus mit Basis 10.
Wenn du nun den dekatischen Log. als Exponent hast und als Basis 10,
dann bekommst du als Ergebnis x:
[mm] 10^{lg{x}}=x [/mm]
Betrachten wir hierzu ein Bsp.; angenommen x=100:
dann wäre der lg{100}=2,
setzen wir jetzt 2 als Exponent für 10^ , so erhalten wir:
[mm] 10^2=10^{lg{100}}=100 [/mm]

Diese Gesetzmäßigkeit gilt für jeden Logarithmus.

Ich hoffe du konntest meinem Gedankengang folgen.

MfG
chmul

> P.S.: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. ;)
>  
>
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]