matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Logarithmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Logarithmen
Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen: Gleichungen
Status: (Frage) beantwortet Status 
Datum: 13:12 Fr 20.05.2005
Autor: Nightwalker12345

Hallo,

würde gerne 2 Fragen zu zwei Aufgaben stellen.

Also:

19 ermittle die Lösung der Gleichung.

a) log von x zur Basis a (log a x) = 1/2 log a (p+q) - 1/2 log a (p-q)
das a hinter der Basis ist jeweils immer klein und steht eigentlich unter log.

Ansatz: das 1/2 könnte ich jetzt entweder hinter (p+q) und (p-q) schreiben oder das p+q in einer Wurzel schreiben also:

log a x = log a  [mm] \wurzel{p+q} [/mm] - log a  [mm] \wurzel{p-q} [/mm]

ich dachte da eigentlich , beides dann unter einer Wurzel zuschreiben

also: log a x = log a  [mm] \wurzel{ \bruch{p+q}{p-q} } [/mm]

so vielleicht könnte ja jemand den nächsten Schritt posten.
oder die bisherigen ausbessern.

Danke.

mfg
NW


        
Bezug
Logarithmen: Fertig!
Status: (Antwort) fertig Status 
Datum: 13:29 Fr 20.05.2005
Autor: Julius

Hallo NW!

> a) log von x zur Basis a (log a x) = 1/2 log a (p+q) - 1/2
> log a (p-q)
> das a hinter der Basis ist jeweils immer klein und steht
> eigentlich unter log.
>  
> Ansatz: das 1/2 könnte ich jetzt entweder hinter (p+q) und
> (p-q) schreiben oder das p+q in einer Wurzel schreiben
> also:
>  
> log a x = log a  [mm]\wurzel{p+q}[/mm] - log a  [mm]\wurzel{p-q}[/mm]

[ok]

> ich dachte da eigentlich , beides dann unter einer Wurzel
> zuschreiben
>  
> also: log a x = log a  [mm]\wurzel{ \bruch{p+q}{p-q} }[/mm]

[ok]

Du bist bereits fertig. :-) Wenn die Logarithmen zweier Zahlen zur gleichen Basis gleich sind, dann sind auch die Zahlen selbst gleich. Um das einzusehen, könntest du ja einfach auf beiden Seiten der Gleichung die Umkerfunktion von [mm] $\log_a$ [/mm] anwenden, also so:

[mm] $a^{\mbox{linke Seite}} [/mm] = [mm] a^{\mbox{rechte Seite}}$, [/mm]

und du kommst wegen [mm] $a^{\log_a(y)}=y$ [/mm] sofort auf

$x = [mm] \bruch{p+q}{p-q}$. [/mm]

Viele Grüße
Julius


Bezug
        
Bezug
Logarithmen: Gleichungen Aufg.2
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 20.05.2005
Autor: Nightwalker12345

Hallo,

hätte da noch eine weitere Aufgabe.

also:

Bestimme eine reelle Zahl a , so dass die Gleichung für alle x  [mm] \varepsilon \IR^{>0} [/mm]   gilt

b) [mm] log_{a} [/mm] x =  [mm] -log_{2} [/mm] x

hätte da jetzt folgendes gemacht (was wahrscheinlich falsch ist)
also:  [mm] a^{ -log_{2}x} [/mm] = x

aber was nun zumachen ist. ???

danke im vorraus
mfg
NW

Bezug
                
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 20.05.2005
Autor: Fugre


> Hallo,
>  
> hätte da noch eine weitere Aufgabe.
>  
> also:
>  
> Bestimme eine reelle Zahl a , so dass die Gleichung für
> alle x  [mm]\varepsilon \IR^{>0}[/mm]   gilt
>  
> b) [mm]log_{a}[/mm] x =  [mm]-log_{2}[/mm] x
>  
> hätte da jetzt folgendes gemacht (was wahrscheinlich falsch
> ist)
>  also:  [mm]a^{ -log_{2}x}[/mm] = x
>  
> aber was nun zumachen ist. ???
>  
> danke im vorraus
>  mfg
>  NW

Hallo Nightwalker,

also versuchen wir es mal:
[mm] $\log_{a} [/mm] x =  [mm] -\log_{2} [/mm] x$
Jetzt können wir uns diesen Zusammenhang zunutze machen:
$    [mm] \log_b(r) [/mm] = [mm] \frac{\log_a(r)}{\log_a(b)} [/mm] $
Daraus folgt:
[mm] $\frac{\log x}{\log a}=-\frac{\log x}{\log 2}$ [/mm]
Drehen wir es um, so gilt:
[mm] $\frac{\log a}{\log x}=-\frac{\log 2}{\log x}$ [/mm]
Nun [mm] $|*\log [/mm] x$
[mm] $\log a=-\frac{\log 2*\log x}{\log x}$ [/mm]
und wir kürzen:
[mm] $\log a=-\log [/mm] 2$
[mm] $\log a=\log\frac{1}{2}$ [/mm]
[mm] $a=\frac{1}{2}$ [/mm]

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein,
so frag bitte nach.

Liebe Grüße
Fugre

Bezug
        
Bezug
Logarithmen: Augabe 3
Status: (Frage) beantwortet Status 
Datum: 16:51 So 22.05.2005
Autor: Nightwalker12345

Hallo,

: Bestimme eine reelle Zahl... gleiche Aufgabenstellung wie in Aufgabe 2

also:

lg x = 0,1 [mm] log_{a} [/mm] x

so ich würde jetzt:  ( [mm] 10^{(0,1) log_{a} x}) [/mm] = x

aber so richtig weiß ich auch nicht , was ich machen soll...
wäre nett, wenn mir jemand helfen könnte.
Danke

mfg
N.W.

Bezug
                
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 So 22.05.2005
Autor: Fugre


> Hallo,
>  
> : Bestimme eine reelle Zahl... gleiche Aufgabenstellung wie
> in Aufgabe 2
>  
> also:
>  
> lg x = 0,1 [mm]log_{a}[/mm] x
>
> so ich würde jetzt:  ( [mm]10^{(0,1) log_{a} x})[/mm] = x
>  
> aber so richtig weiß ich auch nicht , was ich machen
> soll...
>  wäre nett, wenn mir jemand helfen könnte.
>  Danke
>  
> mfg
>  N.W.

Hallo Nightwalker,

versuche es doch mal genauso wie ich es bei der
vorigen Aufgabe versucht habe. Am besten postest
du auch den Rechenweg und nicht nur das Ergebnis.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]