matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesLogarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Logarithmen
Logarithmen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mo 17.07.2006
Autor: juthe

Aufgabe
[mm] \log_{10}(4x-2) [/mm] = 1

soweit ich das jetzt verstanden habe muss man, um diese Gleichung nach x aufzulösen, uf beiden Seiten mit log10 multiplizieren, 2 addieren und mit 4 dividieren um folgendes Ergebnis herauszubekommen:
x = 0,75
ist das so richtig? wenn ja würde ich mich dennoch freuen, falls ihr mir noch sagen könntet warum genau ich das so machen musste..:-)

Denn soweit ich das verstanden habe logarithmiert man eigentlich um ein x aus dem Exponenten zu bekommen.  Aber das hat jam it dieser Gleichung nichts u tun.

        
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 17.07.2006
Autor: Bastiane

Hallo juthe!

> [mm]\log_{10}(4x-2)[/mm] = 1
>  soweit ich das jetzt verstanden habe muss man, um diese
> Gleichung nach x aufzulösen, uf beiden Seiten mit log10
> multiplizieren, 2 addieren und mit 4 dividieren um

Ich fürchte, das hast du falsch verstanden. Wo hast du das denn her? Also, der Logarithmus ist quasi die Umkehrfunktion der Exponentialfunktion. So wie Wurzel und Quadrat Umkehrfunktionen sind. Das heißt, wenn du den Logarithmus wegbekommen willst, dann musst du irgendwas mit der Exponentialfunktion machen. Da du hier den Zehnerlogarithmus hast (Logarithmus zur Basis 10), musst du "10 hoch die ganze Gleichung" nehmen. Wenn du das nämlich mit dem linken Teil machst, bleibt nur noch genau 4x-2 übrig. Das ist, weil der Logarithmus so definiert ist, nämlich:

[mm] \log_ba=x \gdw b^x=a [/mm]

In deinem Fall also:
[mm] \log_{10}(4x-2)=1 [/mm]

[mm] \gdw 10^1=4x-2 [/mm]

und das kannst du sicher alleine nach x auflösen. :-)

Wenn du das Ganze mit dem Taschenrechner berechnen willst, also z. B. [mm] \log_{10}10, [/mm] dann kannst du das machen, in dem du eine [mm] "\log_{10}" [/mm] -Taste auf deinem Taschenrechner drückst, oder, indem du das Ganze umformst zu: [mm] \log_{10}10=\bruch{\log_210}{\log_210}. [/mm] Denn eine [mm] "\log_2" [/mm] -Taste müsste jeder Taschenrechner haben. Oder du nimmst als Basis die e-Funktion, denn solch eine Taste müsstest du auch haben.

Lies dir dazu doch auch mal den Artikel in unserer Datenbank durch: MBLogarithmusgesetz

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]