matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisLogarhytmusgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Logarhytmusgleichung
Logarhytmusgleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarhytmusgleichung: ln...
Status: (Frage) beantwortet Status 
Datum: 11:51 So 09.10.2005
Autor: fisch.auge

Hallo ich nochmal :D

Also ich hab die Gleichung:

[mm] ln(\wurzel{x})+2*ln(x)=ln(2x) [/mm]
[mm] \bruch{1}{2}ln(x)+2*ln(x)=ln(2x) [/mm]

ich verkürze die Rechnung jetzt mal:

[mm] x^3=4*x^2 [/mm]
[mm] x^3-4x^2=0 [/mm]

So nun mein Problem... durch probieren käme ich auf x=4, nur wie mache ich das jetzt nochmal rechnerisch?
Danke schonmal und Grüße,
fisch.auge

        
Bezug
Logarhytmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 So 09.10.2005
Autor: DaMenge

Hi,

also ich gehe dann auch nur mal auf deine letzte Glichung dritten Grades ein:

Es ist tatsächlich so, dass man eine Lösung der Gleichung durch probieren oder scharfes Hinsehen findet und dann mittels MBPolynomdivision die Nullstelle rausteilt (hier also (x-4) rausteilen) - dann bleibt ein Polynom zweiten Grades übrig, das man dann mit den Standard-Formeln lösen kann.

reicht dir das als Antwort?

viele Grüße
DaMenge

Bezug
                
Bezug
Logarhytmusgleichung: soweit...
Status: (Frage) beantwortet Status 
Datum: 12:23 So 09.10.2005
Autor: fisch.auge

soweit bin ich auch schon gekommen...
Nach der Polynomdivision bekomme ich aber [mm] x^2=0 [/mm] und das ist ja keine weitere Lösung, da 0 nicht im Definitionsbereich liegt...
Was aber tue ich, wenn ich durch probieren nicht auf ein Ergebnis komme?

Gruß fisch.auge

Bezug
                        
Bezug
Logarhytmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 09.10.2005
Autor: DaMenge

Hi,

wenn 0 nicht im Def.Bereich liegt, dann hast du doch eine schöne eindeutige Lösung...

Wenn du dich allgemein beim Probieren an die Teiler des konstanten Summand der kubischen Gleichung hälst, solltest du eigentlich ne Lösung finden.
(wenn kein konstanter Summand vorkommt ist x=0 eine Lösung, die du rausteilen kannst.)

viele Grüße
DaMenge

Bezug
        
Bezug
Logarhytmusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 09.10.2005
Autor: Marc

Hallo fisch.auge,

> ich verkürze die Rechnung jetzt mal:
>  
> [mm]x^3=4*x^2[/mm]
>  [mm]x^3-4x^2=0[/mm]
>  
> So nun mein Problem... durch probieren käme ich auf x=4,
> nur wie mache ich das jetzt nochmal rechnerisch?

zunächst zu dieser Gleichung:

Hier wäre das einfachste, [mm] x^2 [/mm] auszuklammern:

[mm] $x^2*(x-4)=0$ [/mm]

Dann sieht man sofort, dass entweder
[mm] $x^2=0$ [/mm] oder $x-4=0$
gelten muss. Die erste Gleichung führt dann auf ein Ergebnis, das nicht im Definitionsbereich liegt.

Nun zurück zu eigentlichen Gleichung:

> Also ich hab die Gleichung:
>  
> [mm]ln(\wurzel{x})+2*ln(x)=ln(2x)[/mm]
>  [mm]\bruch{1}{2}ln(x)+2*ln(x)=ln(2x)[/mm]

Durch Weiterrechnen komme ich nämlich nicht auf deine Polynomgleichung:

[mm] $\gdw$ $\bruch{1}{2}\ln(x)+2*\ln(x)=\ln(2)+\ln(x)$ [/mm]

[mm] $\gdw$ $\bruch{1}{2}\ln(x)+\ln(x)=\ln(2)$ [/mm]

[mm] $\gdw$ $\bruch{3}{2}\ln(x)=\ln(2)$ [/mm]

[mm] $\gdw$ $\ln(x)=\bruch{2}{3}\ln(2)$ [/mm]

[mm] $\gdw$ $\ln(x)=\ln(2^{\bruch{2}{3}})$ [/mm]

(Durch Vergleich der Argumente, oder durch [mm] $e^{\ldots}$) [/mm]

[mm] $\gdw$ $x=2^{\bruch{2}{3}}$ [/mm]

[mm] $\gdw$ $x=\wurzel[3]{4}$ [/mm]

Wie du auf deine Gleichung gekommen bist, sehe ich leider nicht...

Viele Grüße,
Marc

Bezug
                
Bezug
Logarhytmusgleichung: ja...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 So 09.10.2005
Autor: fisch.auge

hast recht, ich hab da nen kleinen Rechenfehler eingebaut!!!
Danke!

Gruß fisch.auge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]