matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLog Umformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Log Umformung
Log Umformung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log Umformung: Beweis
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 20.01.2010
Autor: PowerBauer

Aufgabe
Zeige, dass
[mm] log_{b} u^{n} [/mm] = n * [mm] log_{b} [/mm] u

ist bestimmt super einfach - aber bei mir hakt es im Moment sehr. Ich habe das immer nur benutzt, aber nie über das Warum nachgedacht.
Ausgehend von der Grundlage des Log. müsste gelten:
[mm] log_{b} u^{n} [/mm] = x
dann ist
[mm] b^{x} [/mm] = [mm] u^{n} [/mm]
aber damit komme ich auch nicht weiter...
jmd. eine Idee?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 20.01.2010
Autor: schachuzipus

Hallo PowerBauer und herzlich [willkommenmr],

> Zeige, dass
> [mm]log_{b} u^{n}[/mm] = n * [mm]log_{b}[/mm] u
>  ist bestimmt super einfach - aber bei mir hakt es im
> Moment sehr. Ich habe das immer nur benutzt, aber nie über
> das Warum nachgedacht.
>  Ausgehend von der Grundlage des Log. müsste gelten:
>  [mm]log_{b} u^{n}[/mm] = x
>  dann ist
>  [mm]b^{x}[/mm] = [mm]u^{n}[/mm]
>  aber damit komme ich auch nicht weiter...
>  jmd. eine Idee?

Verwende das Logarithmusgesetz für Produkte:

[mm] $\log_{b}(u\cdot{}v)=\log_b(u)+\log_b(v)$ [/mm]

Hier also [mm] $\log_b\left(u^n\right)=\log_b(\underbrace{u\cdot{}u\cdot{}....\cdot{}u}_{\text{n-mal}})=\underbrace{\log_b(u)+\log_b(u)+....+\log_b(u)}_{\text{n-mal}}=n\cdot{}\log_b(u)$ [/mm]

Formal schöner ohne Pünktchen per vollst. Induktion nach n ...

Kennst du die?


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Log Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mi 20.01.2010
Autor: abakus


> Hallo PowerBauer und herzlich [willkommenmr],
>  
> > Zeige, dass
> > [mm]log_{b} u^{n}[/mm] = n * [mm]log_{b}[/mm] u
>  >  ist bestimmt super einfach - aber bei mir hakt es im
> > Moment sehr. Ich habe das immer nur benutzt, aber nie über
> > das Warum nachgedacht.
>  >  Ausgehend von der Grundlage des Log. müsste gelten:
>  >  [mm]log_{b} u^{n}[/mm] = x
>  >  dann ist
>  >  [mm]b^{x}[/mm] = [mm]u^{n}[/mm]
>  >  aber damit komme ich auch nicht weiter...
>  >  jmd. eine Idee?
>
> Verwende das Logarithmusgesetz für Produkte:
>  
> [mm]\log_{b}(u\cdot{}v)=\log_b(u)+\log_b(v)[/mm]
>  
> Hier also
> [mm]\log_b\left(u^n\right)=\log_b(\underbrace{u\cdot{}u\cdot{}....\cdot{}u}_{\text{n-mal}})=\underbrace{\log_b(u)+\log_b(u)+....+\log_b(u)}_{\text{n-mal}}=n\cdot{}\log_b(u)[/mm]
>  
> Formal schöner ohne Pünktchen per vollst. Induktion nach
> n ...

Einfacher: Zeige, dass [mm] b^{log_{b} u^{n}}=b^{n log_{b}u} [/mm] ist.
Der rechte Term lässt sich in [mm] (b^{log_{b}u})^n [/mm] umschreiben.
Gruß Abakus

>  
> Kennst du die?
>  
>
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>
>
> LG
>  
> schachuzipus


Bezug
                
Bezug
Log Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 20.01.2010
Autor: PowerBauer

Vielen Dank für die schnelle Antwort - (Pünktchen reichen mir...) ;)

PB

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]