matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLog-Gleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Log-Gleichung
Log-Gleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mo 29.03.2010
Autor: dennisH.

Aufgabe
Lösen Sie die Gleichung [mm] ln(ex+2e)=-1+ln(x^2). [/mm]

Mir fällt kein Ansatz ein um diese Aufgabe zu lösen. Bitte um Tipps.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 29.03.2010
Autor: angela.h.b.


> Lösen Sie die Gleichung [mm]ln(ex+2e)=-1+ln(x^2).[/mm]
>  Mir fällt kein Ansatz ein um diese Aufgabe zu lösen.
> Bitte um Tipps.
>  

Hallo,

ziemlich naheliegend wäre es, mal beide Seiten "e hoch" zu nehmen.

Was bekommst Du? Wo ist der Vorteil? Gibt's Probleme?

Gruß v. Angela


Bezug
                
Bezug
Log-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mo 29.03.2010
Autor: dennisH.

Wie verfährt man weiter, nachdem man auf beiden seiten e hoch gemacht hat [mm] e^{ln(ex+2e)}=e^{-1}+e^{ln(x^2)}? [/mm] Bin etwas ratlos, da ich die Logarithmengesetze hier nicht anwenden kann.

Bezug
                        
Bezug
Log-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 29.03.2010
Autor: angela.h.b.


> Wie verfährt man weiter, nachdem man auf beiden seiten e
> hoch gemacht hat [mm]e^{ln(ex+2e)}=e^{-1}+e^{ln(x^2)}?[/mm]

Hallo,

richtig heißt es [mm] e^{ln(ex+2e)}=e^{-1}\red{*}e^{ln(x^2)}. [/mm]

> Bin
> etwas ratlos, da ich die Logarithmengesetze hier nicht
> anwenden kann.  

Logarithmengesetze brauchst Du hier nicht, aber Du solltest verwenden, daß die e-Funktion die Umkehrung des Logarithmus ist.

Was ist also "e hoch Logarithmus von irgendwas"?

Gruß v. Angela






Bezug
                                
Bezug
Log-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mo 29.03.2010
Autor: dennisH.

Nach ein paar Umformungen bin ich auf die Gleichung [mm] 0=x^2-e^2x-2e^2 [/mm] gekommen und habe somit die pq-Formel angewendet und bin auf [mm] x_{1}= [/mm] ca. 9 und [mm] x_{2}=-1,64 [/mm] gekommen. Vielen Dank für die Hilfe.

Nur nochmal zum Mal-Zeichen beim Hochnehmen. Warum wird das Plus zum Mal?

Viele Grüße
Dennis

Bezug
                                        
Bezug
Log-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 29.03.2010
Autor: schachuzipus

Hallo Dennis,

> Nach ein paar Umformungen bin ich auf die Gleichung
> [mm]0=x^2-e^2x-2e^2[/mm][ok] gekommen und habe somit die pq-Formel
> angewendet und bin auf [mm]x_{1}=[/mm] ca. 9 und [mm]x_{2}=-1,64[/mm] [ok]
> gekommen. Vielen Dank für die Hilfe.
>  
> Nur nochmal zum Mal-Zeichen beim Hochnehmen. Warum wird das
> Plus zum Mal?

Du wendest auf [mm] $-1+\ln(x^2)$ [/mm] die Exponentialfunktion an, das gibt

[mm] $e^{-1+\ln(x^2)}=e^{-1}\cdot{}e^{\ln(x^2)}=\ldots$ [/mm]

Das ist das übliche Potenzgesetz: [mm] $a^{n}\cdot{}a^m=a^{n+m}$ [/mm]

>  
> Viele Grüße
>  Dennis

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]