matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieLösungszahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Lösungszahlen
Lösungszahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungszahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Sa 30.05.2009
Autor: Leni-H

Aufgabe
Seien f: [mm] \IR \to \IR; [/mm] x [mm] \mapsto [/mm] f(x) [mm] \in \IZ[X], [/mm] m [mm] \in \IN [/mm] und sei

[mm] \rho_{.}(m,f): \IZ \to \IN_{0}; [/mm] a [mm] \mapsto \rho_{a}(m,f) [/mm]

wobei [mm] \rho_{a}(m,f) [/mm] := #{x [mm] \in \IN_{0}; [/mm] x<m und f(x)+a [mm] \equiv [/mm] 0 mod m}

Zeigen Sie:
[mm] \summe_{a=0}^{m-1} \rho_{a}(m,f) [/mm] = m

Hallo,

ich habe Probleme bei obiger Aufgabe. Kann mir evtl. jemand einen Ansatz verraten wie ich hier dran gehen soll.

Vielen Dank!

LG!!

        
Bezug
Lösungszahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:53 So 31.05.2009
Autor: Leni-H

Weiß hier niemand was dazu?

Bezug
        
Bezug
Lösungszahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 So 31.05.2009
Autor: statler

Hallo + frohe Pfingsten!

> Seien f: [mm]\IR \to \IR;[/mm] x [mm]\mapsto[/mm] f(x) [mm]\in \IZ[X],[/mm] m [mm]\in \IN[/mm]
> und sei

Das scheint mir ganz schlecht hingeschrieben: Vermutlich soll f(X) [mm] \in \IZ[X] [/mm] sein, und f die von diesem Polynom durch Einsetzen induzierte Abb.

> [mm]\rho_{.}(m,f): \IZ \to \IN_{0};[/mm] a [mm]\mapsto \rho_{a}(m,f)[/mm]
>  
> wobei [mm]\rho_{a}(m,f)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= # { x [mm]\in \IN_{0};[/mm] x < m und f(x) + a

> [mm]\equiv[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 mod m }

>  
> Zeigen Sie:
>  [mm]\summe_{a=0}^{m-1} \rho_{a}(m,f)[/mm] = m

Jetzt soll x von 0 bis m-1 gehen, also gerade ein volles Restsystem mod m durchlaufen. und zählen tu ich, für wie viele Reste x jeweils f(x) [mm] \equiv [/mm] -a mod m ist. a (und damit auch -a) soll aber auch gerade ein volles Restsystem durchlaufen, dann kriege ich beim Zählen natürlich gerade m, weil jedes f(x) in genau einer dieser Restklassen liegt.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Lösungszahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 31.05.2009
Autor: Leni-H

Hm ja, mir ist das alles klar, wenn mans so in Worten erklärt. Aber wie kann man den Beweis denn mathematisch aufschreiben??

Bezug
                        
Bezug
Lösungszahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 02.06.2009
Autor: Leni-H

Kann mir jemand hier bei der mathematischen Formulierung helfen?

Bezug
                        
Bezug
Lösungszahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Di 02.06.2009
Autor: statler

Hi!

Für 0 [mm] \le [/mm] a [mm] \le [/mm] m-1 bilden die Mengen [mm] U_{a} [/mm] := {x [mm] \in \IN_{0}; [/mm] x < m und f(x) + a [mm] \equiv [/mm] 0 mod m} eine Partition (= disjunkte Zerlegung) der Menge U = {x [mm] \in \IN_{0}; [/mm] x < m}. Es gibt m Stück von ihnen, von denen einige evtl. leer sind. Je nach Ausbildungsstand ist das klar oder müßte mehr oder weniger detailliert bewiesen werden.
Dann ist aber $$m\ =\ |U|\ =\ [mm] \summe_{a} |U_{a}|$$ [/mm] klar.

Wenn du es verstanden hast, solltest du es auch ausdrücken können. Mach wenigstens einen Versuch. Bitte.
Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]