matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Lösungsmengen bestimmen...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Lösungsmengen bestimmen...
Lösungsmengen bestimmen... < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmengen bestimmen...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 02.12.2013
Autor: Anna_G

Aufgabe
Bestimme die Lösungsmenge.
[mm] x^{2} [/mm] - 4x + 4 =0

Hallo,

ich scheitere leider schon bei den ersten Teilaufgaben der Aufgabenstellung und hoffe, dass mir jemand weiterhelfen kann...

  [mm] x^{2} [/mm] - 4x + 4 = 0 | Binomische Formel
[mm] \gdw (x^{2} [/mm] + 4x)  [mm] (x^{2} [/mm] - 4x) +4 =0 |-4
[mm] \gdw (x^{2} [/mm] + 4x) [mm] (x^{2} [/mm] - 4x) = -4

(Die folgende Rechnung muss zwingend so dargestellt werden, wie gegeben...)

  [mm] x^{2} [/mm] + 4x = 0|-4x    oder   [mm] x^{2} [/mm] - 4x = 0| +4x
[mm] \gdw x^{2} [/mm] = [mm] -4x|*(-\bruch{1}{4}) [/mm]       oder  [mm] \gdw x^{2} [/mm] = [mm] 4x|*(\bruch{1}{4}) [/mm]
[mm] \gdw -\bruch{1}{4}x^{2} [/mm] = x           oder  [mm] \gdw \bruch{1}{4} x^{2} [/mm] =x


Ich würde nun versuchen "irgendwo" Wurzeln zu ziehen, jedoch "darf" ich mich nur auf den schulischen Stoff beschränken.-also das "normale" Zusammenfassen von Termen und die binomischen Formeln und dabei fehlt mir sogar der Anhaltspunkt... ;(

Ich freue mich auf Hilfe.
Lg.

        
Bezug
Lösungsmengen bestimmen...: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 02.12.2013
Autor: Diophant

Hallo,

> Bestimme die Lösungsmenge.
> [mm]x^{2}[/mm] - 4x + 4 =0
> Hallo,

>

> ich scheitere leider schon bei den ersten Teilaufgaben der
> Aufgabenstellung und hoffe, dass mir jemand weiterhelfen
> kann...

>

> [mm]x^{2}[/mm] - 4x + 4 = 0 | Binomische Formel
> [mm]\gdw (x^{2}[/mm] + 4x) [mm](x^{2}[/mm] - 4x) +4 =0 |-4

Das ist falsch, und weit davon entfernt, eine binomische Formel zu sein...

Wende mal das zweite Binom [mm] (a-b)^2 [/mm] auf den Term

[mm] (x-2)^2 [/mm]

an, und ich glaube fast, dann erübrigen sich all deine weiteren Fragen, denen man, um ehrlich zu sein, nicht wirklich einen Sinn abgewinnen kann.


Gruß, Diophant
 

Bezug
                
Bezug
Lösungsmengen bestimmen...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Mo 02.12.2013
Autor: Anna_G

Danke,
die "goldene 2" ist gefunden... die blödesten Fehler sind immer am schwersten zu finden... ^^

Bezug
        
Bezug
Lösungsmengen bestimmen...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mo 02.12.2013
Autor: Marcel

Hallo,

nur mal nebenbei - auch, wenn die Rechnung bis dahin ja schon falsch wird:

> ...
>  [mm]\gdw (x^{2}[/mm] + 4x)  [mm](x^{2}[/mm] - 4x) +4 =0 |-4
>  [mm]\gdw (x^{2}[/mm] + 4x) [mm](x^{2}[/mm] - 4x) = -4
>  
> (Die folgende Rechnung muss zwingend so dargestellt werden,
> wie gegeben...)
>  
> [mm]x^{2}[/mm] + 4x = 0|-4x    oder   [mm]x^{2}[/mm] - 4x = 0| +4x

Du sagst also, dass ein Produkt zweier Faktoren [mm] $a,b\,,$ [/mm] also

    [mm] $a*b\,$ [/mm]

genau dann [mm] $=\;-\;4$ [/mm] (!!!) ist, wenn [mm] $a=0\,$ [/mm] oder [mm] $b=0\,$? [/mm] Oo ^^

>  [mm]\gdw x^{2}[/mm] = [mm]-4x|*(-\bruch{1}{4})[/mm]       oder  [mm]\gdw x^{2}[/mm] =
> [mm]4x|*(\bruch{1}{4})[/mm]
>  [mm]\gdw -\bruch{1}{4}x^{2}[/mm] = x           oder  [mm]\gdw \bruch{1}{4} x^{2}[/mm]
> =x
>  
>
> Ich würde nun versuchen "irgendwo" Wurzeln zu ziehen,
> jedoch "darf" ich mich nur auf den schulischen Stoff
> beschränken.-also das "normale" Zusammenfassen von Termen
> und die binomischen Formeln und dabei fehlt mir sogar der
> Anhaltspunkt... ;(

Also selbst, wenn Du
  
    [mm] $(x^2+4x)*(x^2-4x)\;\red{\;=\;0}$ [/mm]

hättest und damit dann

    [mm] $x^2+4x=0$ [/mm]    oder [mm] $x^2-4x=0\,,$ [/mm]

dann geht's doch einfach weiter:

Betrachten wir nur mal [mm] $x^2+4x=0\,.$ [/mm] Dann kannst Du so weiterrechnen:

    [mm] $x^2+4x=0$ $\iff$ [/mm]    $x(x+4)=0$    [mm] $\iff$ ($x=0\,$ [/mm] oder [mm] $x=-4\,$), [/mm]

oder Du könntest auch so weiterrechnen:

    [mm] $x^2+4x=0$ $\iff$ $x^2=-4x$ [/mm]    

    [mm] $\iff$ [/mm] (1. Fall: Sei [mm] $x=0\,.$ [/mm] Dann gilt [mm] $x^2=0^2=0$ [/mm] und [mm] $-4x=-4*0=0\,,$ [/mm]
                  also ist [mm] $x=0\,$ [/mm] eine Lösung.

         2. Fall: Sei $x [mm] \not=0\,.$ [/mm] Dann gilt [mm] $x^2=-4x$ $\iff$ $x^2/x=-4x/x$ $\iff$ $x=-4\,.$) [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]