matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösungsgesamtheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Lösungsgesamtheit
Lösungsgesamtheit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsgesamtheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Mi 07.01.2009
Autor: dupline

Aufgabe
Im [mm] \IR^4 [/mm] seien die Vektoren [mm] \vec{v_{1}} [/mm] = [mm] \vektor{1 \\ 1 \\ 1 \\ 0}, \vec{v_{2}} [/mm] = [mm] \vektor{1 \\ 2 \\ 0 \\ 3}, \vec{v_{3}} [/mm] = [mm] \vektor{1 \\ 2 \\ 3 \\ 4} [/mm] gegeben.
Man bestimme ein Gleichungssystem, dessen Lösungsgesamtheit [mm] \IR v_{1} [/mm] + [mm] \IR v_{2} [/mm] + [mm] \IR v_{3} [/mm] ist.

Hallo,

ich habe ein Problem mit dem Wort "Lösungsgesamtheit", ich weiß nicht genau was ich herausbekommen soll.

Stimmt die Vorgehensweise:
Mit den 3 Vektoren ein LGS aufstellen und mit Gauß umformen, so dass ich nur noch 3 Zeilen stehen habe
[mm] \pmat{ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 } [/mm]
... aber dann?
Ich weiß dass [mm] x_{1}, x_{2}, x_{3} \in \IR [/mm] sein müssen, aber irgendwie hängts bei mir grad.

Danke schon mal

Gruß
Katrin

        
Bezug
Lösungsgesamtheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 07.01.2009
Autor: angela.h.b.


> Im [mm]\IR^4[/mm] seien die Vektoren [mm]\vec{v_{1}}[/mm] = [mm]\vektor{1 \\ 1 \\ 1 \\ 0}, \vec{v_{2}}[/mm]
> = [mm]\vektor{1 \\ 2 \\ 0 \\ 3}, \vec{v_{3}}[/mm] = [mm]\vektor{1 \\ 2 \\ 3 \\ 4}[/mm]
> gegeben.
>  Man bestimme ein Gleichungssystem, dessen
> Lösungsgesamtheit [mm]\IR v_{1}[/mm] + [mm]\IR v_{2}[/mm] + [mm]\IR v_{3}[/mm] ist.
>  Hallo,
>  
> ich habe ein Problem mit dem Wort "Lösungsgesamtheit", ich
> weiß nicht genau was ich herausbekommen soll.

Hallo,

"Lösungsmenge" ist damit gemeint.

Du sollst ein Gleichungssystem angeben, dessen Lösungsmenge  [mm]\IR v_{1}[/mm] + [mm]\IR v_{2}[/mm] + [mm]\IR v_{3}[/mm]  ist.
Oder anders ausgedrückt: ein Gleichungssystem, dessen Lösungsraum aufgespannt wird von [mm] v_1, v_2, v_3. [/mm]

>  
> Stimmt die Vorgehensweise:
> Mit den 3 Vektoren ein LGS aufstellen und mit Gauß
> umformen, so dass ich nur noch 3 Zeilen stehen habe
>  [mm]\pmat{ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 }[/mm]
>  ... aber
> dann?
>  Ich weiß dass [mm]x_{1}, x_{2}, x_{3} \in \IR[/mm] sein müssen,
> aber irgendwie hängts bei mir grad.

[mm] x_1, x_2, x_3 [/mm] sollen sicher Deine Variablen sein.

Du brauchst eine mehr davon, denn Deine Lösungsektoren sollen ja die Gestalt  [mm]\lambda_1v_{1}[/mm] + [mm]\lambda_2 v_{2}[/mm] + [mm]\lambda_3 v_{3}[/mm]  haben.

Es gibt mehrere Möglichkeiten, wie man vorgehen kann.

Die Vorgehensweise des folgenden Vorschlages kennt man zumindest ansatzweise aus der Schule, wenn nämlich die Parameterdarstellung einer Ebene in die Koordinatenform umgewandelt wird:

Sei [mm] \vektor{x_\\x_2\\x_3\\x_4} [/mm] eine Lösung des gesuchten Gleichungssystems.

Dann ist

[mm] \vektor{x_1\\x_2\\x_3\\x_4}=[/mm]  [mm]\lambda_1v_{1}[/mm] + [mm]\lambda_2 v_{2}[/mm] + [mm]\lambda_3 v_{3}[/mm].

Das liefert Dir ein Gleichungssystem aus  4 Gleichungen.

Eliminiere nun die [mm] \lambda_i. [/mm]

Übrig behältst Du am Ende eine Gleichung, die nur noch [mm] x_1, [/mm] ..., [mm] x_4 [/mm] enthält und kein [mm] \lambda_i [/mm] mehr.

Überzeuge Dich davon, daß [mm] v_1, v_2, v_3 [/mm] die Gleichung lösen, dann weißt Du, daß Du richtig gerechnet hast.

Gruß v. Angela



Bezug
                
Bezug
Lösungsgesamtheit: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 Do 08.01.2009
Autor: dupline

Vielen Dank, Angela.
Du hast mir wieder einmal geholfen !

Viele Grüße
Katrin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]