matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenLösungen von Sinusfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Lösungen von Sinusfunktionen
Lösungen von Sinusfunktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen von Sinusfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 11.08.2011
Autor: MadSebastian

Aufgabe
Bestimme alle Lösungen für x E [0, 2Pi]

a) sin (x) = 0,15

b) sin (x) = 0,9

c) sind (x) = -0,5

Hallo Leute,

heute haben wir in der Schule angefangen Lösungen von Sinusfuntkionen zu bestimmen.

Als Beispielaufgabe hatten wir folgende Aufgabe:

sin(x) = 0,5  |arcussinus = sin^-1

x1 ) = arcsin (0,5)

       = 0,52 = Pi/6

x2= Pi - 1/6Pi = 5/6Pi

-----------------------------------------------------------------------------------------------

Meine Frage ist nun, ob bei der Ermittlung der zweiten Lösung immer Pi von der ersten Lösung abgezogen werden muss? So macht es meiner Meinung nach den Eindruck.

Nun habe ich mal die Aufgabe a) aus den Hausaufgaben probiert zu rechnen, Ihr könnt mir ja sagen, ob diese richtig oder falsch ist.

sin(x) = 0,15 |arcussinus

     x = arcsinus(0,15)
     x1 = 0,15

x2 = Pi - 0,15 = ca. 3



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

LG & Vielen Dank

        
Bezug
Lösungen von Sinusfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 11.08.2011
Autor: MathePower

Hallo MadSebastian,


[willkommenmr]


> Bestimme alle Lösungen für x E [0, 2Pi]
>  
> a) sin (x) = 0,15
>  
> b) sin (x) = 0,9
>  
> c) sind (x) = -0,5
>  Hallo Leute,
>
> heute haben wir in der Schule angefangen Lösungen von
> Sinusfuntkionen zu bestimmen.
>  
> Als Beispielaufgabe hatten wir folgende Aufgabe:
>  
> sin(x) = 0,5  |arcussinus = sin^-1
>  
> x1 ) = arcsin (0,5)
>  
> = 0,52 = Pi/6
>  
> x2= Pi - 1/6Pi = 5/6Pi
>  
> -----------------------------------------------------------------------------------------------
>  
> Meine Frage ist nun, ob bei der Ermittlung der zweiten
> Lösung immer Pi von der ersten Lösung abgezogen werden
> muss? So macht es meiner Meinung nach den Eindruck.
>  


Sofern für das erhaltene x gilt: [mm] 0 \le x \le \pi[/mm]
ergibt sich die zweite Lösung zu: [mm]\pi-x[/mm]


> Nun habe ich mal die Aufgabe a) aus den Hausaufgaben
> probiert zu rechnen, Ihr könnt mir ja sagen, ob diese
> richtig oder falsch ist.
>  
> sin(x) = 0,15 |arcussinus
>  
> x = arcsinus(0,15)
>       x1 = 0,15


Es ist [mm]x_{1} = 0,15056... \approx 0,15[/mm]


>  
> x2 = Pi - 0,15 = ca. 3
>  


Rechne hier lieber genau:

[mm]x_{2}=\pi-\arcsin\left(0,15\right) = 2,99102... \approx 2,99[/mm]



>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> LG & Vielen Dank


Gruss
MathePower

Bezug
                
Bezug
Lösungen von Sinusfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 11.08.2011
Autor: MadSebastian

Also kann ich das so verstehen, dass das von mir gerechnete außer den gerundeten Ergebnissen richtig ist?

Ich habe noch eine weitere Frage. Und zwar haben wir heute eine kurze Charakteristik zu der allgemeinen Sinusfunktion f(x) = sin(x) gemacht. Dort gab der Lehrer an das die Nullstellen dieser Funktion mit k * Pi berechnet wird, stimmt dies?

LG

Bezug
                        
Bezug
Lösungen von Sinusfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Do 11.08.2011
Autor: MathePower

Hallo MadSebastian,

> Also kann ich das so verstehen, dass das von mir gerechnete
> außer den gerundeten Ergebnissen richtig ist?


Ja, das kannst Du so verstehen.


>  
> Ich habe noch eine weitere Frage. Und zwar haben wir heute
> eine kurze Charakteristik zu der allgemeinen Sinusfunktion
> f(x) = sin(x) gemacht. Dort gab der Lehrer an das die
> Nullstellen dieser Funktion mit k * Pi berechnet wird,
> stimmt dies?


Ja, wenn [mm]k \in \IZ[/mm] ist.


>  
> LG  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]