matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLösungen mit Betrag
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Lösungen mit Betrag
Lösungen mit Betrag < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 03.01.2009
Autor: Lyrone

Aufgabe
Bestimmen Sie alle Lösungen [mm]z \in \IC[/mm] der Gleichung

[mm]|z+3| + |z-3|=10[/mm]

Welche geometrische Gestalt hat die Lösung in der komplexen Ebene?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi ho,

rechne gerade alte Klausuren durch, bei dieser Aufgabe fehlt mir irgendwie der Ansatz, ich weiss nicht wie ich die Beträge auflösen soll.
Mir ist zwar durchaus bewusst das

[mm]|z| = \wurzel{x^2 + y^2}[/mm]

aber dies hilft mir nicht großartig weiter.

Ich habe folgendes probiert, aber ich glaube ich habe mich da mit den Beträgen vertan:

[mm]|z+3| + |z-3|=10[/mm]

[mm]|z|+|3| + |z|+|-3|=10[/mm]

[mm]2|z|+6=10[/mm]

[mm]|z|=2[/mm]

[mm]\wurzel{x^2 + y^2}=2[/mm]

[mm]x^2 + y^2=4[/mm]

Also ein Kreis mit dem M(0;0) und dem Radius 4?


        
Bezug
Lösungen mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Sa 03.01.2009
Autor: angela.h.b.


> Bestimmen Sie alle Lösungen [mm]z \in \IC[/mm] der Gleichung
>  
> [mm]|z+3| + |z-3|=10[/mm]
>  
> Welche geometrische Gestalt hat die Lösung in der komplexen
> Ebene?

>  Mir ist zwar durchaus bewusst das
>  
> [mm]|z| = \wurzel{x^2 + y^2}[/mm]
>  
> aber dies hilft mir nicht großartig weiter.

Hallo,

Du kannst jede komplexe Zahl z schreiben als z=x+iy mit [mm] x,y\in \IR, [/mm]

und wenn man das getan hat, ist tatsächlich [mm] |z|=\wurzel{x^2 + y^2}. [/mm]

Anders gesagt: den Betrag erhält man, indem man die Wurzel aus der Summe der Quadrate von real- und Imaginärteil zieht.

Schreib doch mal z als z=x+iy.

Dann hast Du zu lösen

|x+iy+3| + |x+iy-3|=10.

Über die Beträge von komplexen Zahlen haben wir ja nun gesprochen.

Überleg Dir, was von x+iy+3 und  x+iy-3  jeweils Real- und Imaginärteil ist.

Und dann rechne weiter.

Gruß v. Angela

Bezug
                
Bezug
Lösungen mit Betrag: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:18 Sa 03.01.2009
Autor: Lyrone

Hallo Angela,

danke für deine flotte Antwort.

Ich bin mir nicht sicher ob ich deinen Rat richtig verstanden habe, habe nun ein neues Ergebnis ...

[mm]|x+iy+3|+|x+iy-3|=10[/mm]

[mm]\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}=10[/mm]

[mm](x+3)^2+y^2+(x-3)^2+y^2=10^2[/mm]

[mm]2x^2+2y^2+18=10^2[/mm]

[mm]x^2+y^2=41[/mm]

War das der richtige Weg?


Bezug
                        
Bezug
Lösungen mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Sa 03.01.2009
Autor: abakus


> Hallo Angela,
>
> danke für deine flotte Antwort.
>  
> Ich bin mir nicht sicher ob ich deinen Rat richtig
> verstanden habe, habe nun ein neues Ergebnis ...
>
> [mm]|x+iy+3|+|x+iy-3|=10[/mm]
>  
> [mm]\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}=10[/mm]
>  
> [mm](x+3)^2+y^2+(x-3)^2+y^2=10^2[/mm]
>  
> [mm]2x^2+2y^2+18=10^2[/mm]
>  
> [mm]x^2+y^2=41[/mm]
>  
> War das der richtige Weg?

Nein. Das Quadrat von [mm]\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}[/mm] ist nicht  
[mm](x+3)^2+y^2+(x-3)^2+y^2[/mm].
Zum Quadrieren einer Summe benötigst du die binomische Formel (du hast nur beide Summanden quadriert, aber das doppelte Produkt vergessen).
Kennst du die Definition einer Ellipse als Menge aller Punkte, deren Summe der Abstände zu zwei festen Punkten konstant ist?
Der Term |z-3| beschreibt in der Zahlenebene den Abstand der komplexen Zahlen z und 3, während |z+3| (was man als
|z-(-3)| schreiben kann)  den Abstand der Zahlen z und -3 angibt. Laut Betragsgleichung ist die Summe dieser beiden Abstände 10 und damit konstant. Das Bild ist also eine Ellipse mit den Brennpunkten 3 und -3.
Gruß Abakus


>  


Bezug
                                
Bezug
Lösungen mit Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 So 04.01.2009
Autor: Lyrone

Hallo Abakus,

danke für deine Antwort. Mit dem Quadrieren der Summe haste natürlich Recht, da habe ich gepennt.
Leider habe ich mit Ellipsen noch gar nix gemacht. Als ich mir die Ellipsen angeschaut habe, bin ich auf die Frage gestossen, wie den nun meine Endgültige Form aussehen muss. In meiner Formelsammlung habe ich mehrere Formlen unterschiedlichster Art.
Für mich am ersichtlichsten, ist die Formel mit "Pol im Mittelpunkt", weil dort im Nenner eine Wurzel steht.

Hier mal meine "Lösung":

Ich erweitere mit 3ter Binomische Formel:

[mm]\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}=10[/mm]

[mm]\left(\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}\right)\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)=10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]

[mm](x+3)^2+y^2-\left((x-3)^2 +y^2)\right)= 10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]

[mm]12x= 10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]

[mm]10=\bruch{12x}{\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)}[/mm]

ist das die Rätsels Lösung?

Aber ich muss zugeben, ich habe mit dieser Aufgabe ein Grundsätzliches Problem, weil mir nicht bewusst ist wie den nun die Endform aussehen soll.



Bezug
                                        
Bezug
Lösungen mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 04.01.2009
Autor: schachuzipus

Hallo Lyrone,

> Hallo Abakus,
>  
> danke für deine Antwort. Mit dem Quadrieren der Summe haste
> natürlich Recht, da habe ich gepennt.
>  Leider habe ich mit Ellipsen noch gar nix gemacht. Als ich
> mir die Ellipsen angeschaut habe, bin ich auf die Frage
> gestossen, wie den nun meine Endgültige Form aussehen muss.
> In meiner Formelsammlung habe ich mehrere Formlen
> unterschiedlichster Art.
>  Für mich am ersichtlichsten, ist die Formel mit "Pol im
> Mittelpunkt", weil dort im Nenner eine Wurzel steht.
>  
> Hier mal meine "Lösung":
>  
> Ich erweitere mit 3ter Binomische Formel:
>  
> [mm]\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}=10[/mm]
>  
> [mm]\left(\wurzel{(x+3)^2+y^2}+\wurzel{(x-3)^2+y^2}\right)\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)=10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]
>  
> [mm](x+3)^2+y^2-\left((x-3)^2 +y^2)\right)= 10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]
>  
> [mm]12x= 10\cdot{}\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)[/mm]
>  
> [mm]10=\bruch{12x}{\left(\wurzel{(x+3)^2+y^2}-\wurzel{(x-3)^2+y^2}\right)}[/mm]
>  
> ist das die Rätsels Lösung?

Boah, das sieht höllisch aus und ich habe es nicht nachkontrolliert

Wenn du mal von deinem ersten Versuch ausgehst und die Wurzelgleichung quadrierst, so hast du doch

[mm] $(x+3)^2+y^2+(x-3)^2+y^2+2\cdot{}\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=100$ [/mm]

Nun die Binome ausrechnen, durch 2 teilen und alles ohne die Wurzeln auf die rechte Seite schaffen, das gibt:

[mm] $\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=41-x^2-y^2$ [/mm]

Nun nochmal quadrieren und zusammenfassen, es fällt das meiste weg, übrig bleibt

[mm] $64x^2+100y^2=1600$ [/mm]

Ohne Gewähr ;-)

>  
> Aber ich muss zugeben, ich habe mit dieser Aufgabe ein
> Grundsätzliches Problem, weil mir nicht bewusst ist wie den
> nun die Endform aussehen soll.

Rechne alles nach und stelle die Endgleichung um in die Form [mm] $E:=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ [/mm]

Dann kannst du die Achsen der Ellipse direkt ablesen

LG

schachuzipus

Bezug
                                                
Bezug
Lösungen mit Betrag: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 06.01.2009
Autor: Lyrone

Hi schachuzipus,

>  
> Boah, das sieht höllisch aus und ich habe es nicht
> nachkontrolliert
>  
> Wenn du mal von deinem ersten Versuch ausgehst und die
> Wurzelgleichung quadrierst, so hast du doch
>  
> [mm](x+3)^2+y^2+(x-3)^2+y^2+2\cdot{}\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=100[/mm]
>  
> Nun die Binome ausrechnen, durch 2 teilen und alles ohne
> die Wurzeln auf die rechte Seite schaffen, das gibt:
>  
> [mm]\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=41-x^2-y^2[/mm]
>  
> Nun nochmal quadrieren und zusammenfassen, es fällt das
> meiste weg, übrig bleibt
>  
> [mm]64x^2+100y^2=1600[/mm]
>  
> Ohne Gewähr ;-)

Wow, Respekt das du dir die Arbeit gemacht hast, bei mir ging es über ne gute DIN A4 Seite. Danke für deine Mühe(n). Habe glücklicherweise das Gleiche raus.

>  
> Rechne alles nach und stelle die Endgleichung um in die
> Form [mm]E:=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/mm]
>  

Habe nun folgende Lösung:

[mm]\frac{x^2}{5^2}+\frac{y^2}{4^2}=1[/mm]

Also ich finde das sieht optisch gut aus. Aber diese Aufgabe war für mich aber auch ein Kampf.

Diesmal endlich richtig?


Bezug
                                                        
Bezug
Lösungen mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Di 06.01.2009
Autor: schachuzipus

Hallo nochmal,

> Hi schachuzipus,
>  
> >  

> > Boah, das sieht höllisch aus und ich habe es nicht
> > nachkontrolliert
>  >  
> > Wenn du mal von deinem ersten Versuch ausgehst und die
> > Wurzelgleichung quadrierst, so hast du doch
>  >  
> >
> [mm](x+3)^2+y^2+(x-3)^2+y^2+2\cdot{}\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=100[/mm]
>  >  
> > Nun die Binome ausrechnen, durch 2 teilen und alles ohne
> > die Wurzeln auf die rechte Seite schaffen, das gibt:
>  >  
> > [mm]\sqrt{(x+3)^2+y^2}\cdot{}\sqrt{(x-3)^2+y^2}=41-x^2-y^2[/mm]
>  >  
> > Nun nochmal quadrieren und zusammenfassen, es fällt das
> > meiste weg, übrig bleibt
>  >  
> > [mm]64x^2+100y^2=1600[/mm]
>  >  
> > Ohne Gewähr ;-)
>  
> Wow, Respekt das du dir die Arbeit gemacht hast, bei mir
> ging es über ne gute DIN A4 Seite. Danke für deine Mühe(n).
> Habe glücklicherweise das Gleiche raus.
>  
> >  

> > Rechne alles nach und stelle die Endgleichung um in die
> > Form [mm]E:=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/mm]
>  >  
>
> Habe nun folgende Lösung:
>  
> [mm]\frac{x^2}{5^2}+\frac{y^2}{4^2}=1[/mm]

[daumenhoch]

>  
> Also ich finde das sieht optisch gut aus. Aber diese
> Aufgabe war für mich aber auch ein Kampf.
>  
> Diesmal endlich richtig?

Jo, das deckt sich mit meiner Lösung und auch mit der zugehörigen Zeichnung


LG

schachuzipus  


Bezug
                                                                
Bezug
Lösungen mit Betrag: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 06.01.2009
Autor: Lyrone

Ahh endlich, wunderbar, hat der Krampf ein Ende ... mich hat es schon vor der Aufgabe gegraust.

Danke an alle und vor allem danke an schachuzipus, der es extra ausgerechnet hat, für die Mühe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]