matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisLösung von Integralgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Lösung von Integralgleichung
Lösung von Integralgleichung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung von Integralgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 04.06.2008
Autor: obda1701

Aufgabe
Löse die Integralgleichung
u(t) - [mm] \integral_{0}^{1}{2stu(s)ds} [/mm] = [mm] sin(\pi [/mm] t) , t [mm] \in [/mm] [0,1], u [mm] \in [/mm] C([0,1])

mit der Hilfe der Neumanschen Reihe.

Ich habe die Aufgabe mal für

u(t) - [mm] \integral_{0}^{1}{stu(s)ds} [/mm] = [mm] sin(\pi [/mm] t) , t [mm] \in [/mm] [0,1], u [mm] \in [/mm] C([0,1])

gelöst durch:
Sei U := C([0,1]), [mm] c(t)=sin(\pi [/mm] t) und T: U [mm] \to [/mm] U, (Tu)(t):= [mm] \integral_{0}^{1}{st u(s) ds} [/mm]

so dass u = c + Tu, bzw. (I-T)u =c

also u = [mm] (I-T)^{-1}c [/mm]

Und dann bei der Ermittlung von [mm] T^{2} [/mm] :
[mm] (T^{2}u)(t) [/mm] = [mm] \integral_{0}^{1}{st \integral_{0}^{1}{sr u(r) dr} ds} [/mm] = [mm] \integral_{0}^{1}{st u(r) \integral_{0}^{1}{s^{2} ds} dr} [/mm] = [mm] \bruch{1}{3}(Tu)(t) [/mm]

was dann zu [mm] T^{n}=(\bruch{1}{3})^{n-1}T [/mm] , n [mm] \ge [/mm] 1 führt.

so dass dann ja [mm] \summe_{k=0}^{\infty} T^{k} [/mm] = I + [mm] \summe_{k=1}^{\infty} (\bruch{1}{3})^{k-1}T [/mm] = I + [mm] \bruch{3}{2}T [/mm] konvergiert.

Aber durch die "2" in dem Integral komme ich dann ja bei

[mm] (T^{2}u)(t) [/mm] = [mm] \integral_{0}^{1}{2st \integral_{0}^{1}{2sr u(r) dr} ds} [/mm] = 4 [mm] \integral_{0}^{1}{st u(r) \integral_{0}^{1}{s^{2} ds} dr} [/mm] = [mm] \bruch{4}{3}(Tu)(t) [/mm]

führt was leider divergiert?

Hab ich da einen Denkfehler?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung von Integralgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 04.06.2008
Autor: Al-Chwarizmi


> Löse die Integralgleichung
>  u(t) - [mm]\integral_{0}^{1}{2stu(s)ds}[/mm] = [mm]sin(\pi[/mm] t) , t [mm]\in[/mm]
> [0,1], u [mm]\in[/mm] C([0,1])
>  
> mit der Hilfe der Neumanschen Reihe.
>  Ich habe die Aufgabe mal für
>
> u(t) - [mm]\integral_{0}^{1}{stu(s)ds}[/mm] = [mm]sin(\pi[/mm] t) , t [mm]\in[/mm]
> [0,1], u [mm]\in[/mm] C([0,1])
>  
> gelöst durch:
>  Sei U := C([0,1]), [mm]c(t)=sin(\pi[/mm] t) und T: U [mm]\to[/mm] U,
> (Tu)(t):= [mm]\integral_{0}^{1}{st u(s) ds}[/mm]
>  
> so dass u = c + Tu, bzw. (I-T)u =c
>  
> also u = [mm](I-T)^{-1}c[/mm]
>  
> Und dann bei der Ermittlung von [mm]T^{2}[/mm] :
>  [mm](T^{2}u)(t)[/mm] = [mm]\integral_{0}^{1}{st \integral_{0}^{1}{sr u(r) dr} ds}[/mm]
> = [mm]\integral_{0}^{1}{st u(r) \integral_{0}^{1}{s^{2} ds} dr}[/mm]
> = [mm]\bruch{1}{3}(Tu)(t)[/mm]
>  
> was dann zu [mm]T^{n}=(\bruch{1}{3})^{n-1}T[/mm] , n [mm]\ge[/mm] 1 führt.
>  
> so dass dann ja [mm]\summe_{k=0}^{\infty} T^{k}[/mm] = I +
> [mm]\summe_{k=1}^{\infty} (\bruch{1}{3})^{k-1}T[/mm] = I +
> [mm]\bruch{3}{2}T[/mm] konvergiert.
>  
> Aber durch die "2" in dem Integral komme ich dann ja bei
>
> [mm](T^{2}u)(t)[/mm] = [mm]\integral_{0}^{1}{2st \integral_{0}^{1}{2sr u(r) dr} ds}[/mm]
> = 4 [mm]\integral_{0}^{1}{st u(r) \integral_{0}^{1}{s^{2} ds} dr}[/mm]
> = [mm]\bruch{4}{3}(Tu)(t)[/mm]
>  
> führt was leider divergiert?
>  
> Hab ich da einen Denkfehler?
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Guten Abend   obda1701,

ich habe versucht, deine Frage zu verstehen. Mir ist aber
nicht klar, welches genau die Variablen sind. Ist zum
Beispiel in

                    [mm]\integral_{0}^{1}{2stu(s)ds}[/mm]

"[mm]\ stu[/mm]" ein Symbol für eine (mir unbekannte) Funktion
oder steht es für ein Produkt der Form

                    [mm]\ s*t*u(s)[/mm]     ?


LG     al-Chw.



Bezug
                
Bezug
Lösung von Integralgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Do 05.06.2008
Autor: obda1701

s und t sind Variablen. t [mm] \in [/mm] [0,1] und über s wird ja integriert.

also

u(t) -  [mm] \integral_{0}^{1}{2*s*t*u(s)ds} [/mm]  =  [mm] sin(\pi [/mm]  t) , t  [mm] \in [/mm]  [0,1], u  [mm] \in [/mm]  C([0,1])

Bezug
        
Bezug
Lösung von Integralgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Do 05.06.2008
Autor: fred97

Deine Rechnung mit

       (Tu)(t) := $ [mm] \integral_{0}^{1}{st u(s) ds} [/mm] $

ist richtig, also T² = 1/3T.

Sei R der Operator aus der Aufgabe, also R = 2T,
dann   R² = 4T² = 4/3T = 2/3R, dh. die Neumannsche Reihe für R ist konvergent.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]