matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung v. gew. DGL 1.Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung v. gew. DGL 1.Ordnung
Lösung v. gew. DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung v. gew. DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 24.10.2011
Autor: WoormTS

Aufgabe
Bestimme alle Lösungen der DGL [mm] x^2+t^2(5/4-x')=0 [/mm] mit Anfangsbedingung x(1)=2.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Abend ihr alle!
Hab mich schon lang nicht mit DGLen beschäftigt und steh bei der Aufg. jetzt völlig aufm Schlauch...
Hab sie bereits umgeformt nach
[mm] x^2-t^2x'=-5/4 *t^2 [/mm]
und versucht, eine homogene Lösung [mm] (x_h=t) [/mm] mit einer speziellen zu verknüpfen - gelingt aber nicht, krieg einfach keine vernünftige Funktion raus...! Und so langsam hab ich das Gefühl, dass ich an irgend nem Punkt was grundlegend falsch mache.

Für nen kleinen Schuppser in die richtige Richtung wäre ich sehr dankbar!

MfG
WoormTS

        
Bezug
Lösung v. gew. DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:47 Di 25.10.2011
Autor: MathePower

Hallo WoormTS,


[willkommenmr]


> Bestimme alle Lösungen der DGL [mm]x^2+t^2(5/4-x')=0[/mm] mit
> Anfangsbedingung x(1)=2.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Guten Abend ihr alle!
>  Hab mich schon lang nicht mit DGLen beschäftigt und steh
> bei der Aufg. jetzt völlig aufm Schlauch...
>  Hab sie bereits umgeformt nach
>  [mm]x^2-t^2x'=-5/4 *t^2[/mm]
>  und versucht, eine homogene Lösung
> [mm](x_h=t)[/mm] mit einer speziellen zu verknüpfen - gelingt aber
> nicht, krieg einfach keine vernünftige Funktion raus...!


Für die Bestimmung der Lösung der homogenen DGL

[mm]x^2-t^2x'=0[/mm]

verwendest Du die Methode der []Trennung der Veränderlichen.


> Und so langsam hab ich das Gefühl, dass ich an irgend nem
> Punkt was grundlegend falsch mache.
>  
> Für nen kleinen Schuppser in die richtige Richtung wäre
> ich sehr dankbar!
>  
> MfG
>  WoormTS


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]