matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLösung stetig/ diff.bar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Lösung stetig/ diff.bar
Lösung stetig/ diff.bar < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung stetig/ diff.bar: Wie kann man das zeigen?
Status: (Frage) überfällig Status 
Datum: 13:55 So 24.11.2013
Autor: mikexx

Aufgabe
Es sei [mm] $\Omega:=]0,\pi[\times ]0,\infty[$. [/mm]
Mit der Fouriermethode der Separation habe ich die beschränkte formale Lösung der folgenden Randwert-Aufgabe bestimmt:

(i) [mm] $\Delta [/mm] u=0$ in [mm] $\Omega$ [/mm]

(ii) [mm] $u(0,y)=u(\pi,y)=0$ [/mm] für [mm] $y\geq [/mm] 0$

(iii) $u(x,0)=g(x)$ für [mm] $x\in [0,\pi]$, [/mm]

wobei [mm] $g\in C^{0,\lambda}([0,\pi])$ [/mm] mit [mm] $0<\lambda\leq [/mm] 1$ und [mm] $g(0)=g(\pi)=0$. [/mm]

Und zwar habe ich folgende beschränkte Lösung erhalten:

[mm] $u(x,y)=\sum_{k=1}^{\infty}g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$, [/mm] mit [mm] $g_k:=\int_0^{\pi}g(x)\sqrt{\frac{2}{\pi}}\sin(kx)\, [/mm] dx$.

Nun ist darüber hinaus noch zu zeigen, dass diese gefundene Lösung in

[mm] $C(\overline{\Omega})\cap C^{\infty}(\Omega)$ [/mm]

liegt. Wie kann man das machen?



Hierbei bezeichnet übrigens [mm] $C^{0,\lambda}([0,\pi])$ [/mm] den Raum der Hölder-stetigen Funktionen auf [mm] $[0,\pi]$. [/mm]


Zunächstmal habe ich versucht zu zeigen, dass [mm] $u\in C(\overline{\Omega})$, [/mm] und zwar mittels Weierstraß-Kriterium:

D.h. mein Ziel ist es zu zeigen, dass

[mm] $\sum_{k=1}^{\infty}g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$ [/mm]

gleichmäßig konvergiert.

Für alle [mm] $0
[mm] $\lvert g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)\rvert
da [mm] $\lvert g_k\rvert\leq\lvert\int_0^{\pi}\vert g(x)\rvert <\infty$, [/mm] weil $g$ Hölder-stetig auf [mm] $[0,\pi]$ [/mm] ist und daher integrierbar und daher integrierbar über [mm] $[0,\pi]$. [/mm] Außerdem gilt [mm] $\lvert\sin(kx)\rvert\leq [/mm] 1$.

Zudem ist [mm] $\lvert\exp(-ky)\rvert=\exp(-ky)$ [/mm] für alle [mm] $0
Es ist

$$
[mm] \sum_{k=1}^{\infty}\exp(-ky)<\infty. [/mm]
$$
Also konvergiert die Reihe gleichmäßig (nach Weierstraß).
Da alle

[mm] $g_k\exp(-ky)\sqrt{\frac{2}{\pi}}\sin(kx)$ [/mm]
stetig auf [mm] $C(\overline{\Omega})$ [/mm] sind, ist $u$ dort stetig.


Erstens weiß ich aber nicht, ob man das so machen kann und zweitens fehlt mir jede Idee, wie ich dann noch zeigen könnte, dass auch [mm] $u\in C^{\infty}(\Omega)$. [/mm]



Über Hilfe wäre ich dankbar!


Viele Grüße

mikexx

        
Bezug
Lösung stetig/ diff.bar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 26.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]