matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenLösung reinkubischer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - Lösung reinkubischer Gleichung
Lösung reinkubischer Gleichung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung reinkubischer Gleichung: Erläuterung
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 05.11.2014
Autor: Windbeutel

Aufgabe
Bei der reinkubischen Gleichung [mm] x^3+T=0 [/mm] mit x [mm] \in \IC [/mm] und t [mm] \in \IR [/mm]
gibt es drei Lösungen
[mm] x_{1} [/mm] = dritte [mm] \wurzel{-t} [/mm] (Sorry ich habe nicht kapiert, wie man hier dir dritte Wurzel eingibt)

[mm] x_{2}= x_{1}w_{1} [/mm]
und
[mm] x_{3}= x_{1}w_{1}, [/mm]
wobei [mm] w_{1} [/mm] der dritten einheitswurzel entspricht mit der Form
[mm] w_{1}=\bruch{1}{2}(-1+I\wurzel{3}) [/mm]

Hallo zusammen.
ich bin beim durchblättern eines Mathebuches auf die obigen Angaben gestoßen.
Die grundlegende Definition der Komlexen Zahl ist mir bekannt, dennoch kann ich der Angaben hier nicht wirklich folgen.

Die Lösung [mm] x_{1} [/mm] ist mir klar.
Wie und wiso jedoch kommt man auf die anderen beiden Lösungen.
Ich habe bereits gegoogelt, aber leider keine Erklärung und / oder Herleitung "für dummies"gefunden.
Ich würde mich sehr frreuen, wenn mir jemand dieses Geschehen genauer erläutern könnte.
Vielen Dank im voraus




        
Bezug
Lösung reinkubischer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 05.11.2014
Autor: MathePower

Hallo Windbeutel,

> Bei der reinkubischen Gleichung [mm]x^3+T=0[/mm] mit x [mm]\in \IC[/mm] und t
> [mm]\in \IR[/mm]
>  gibt es drei Lösungen
>  [mm]x_{1}[/mm] = dritte [mm]\wurzel{-t}[/mm] (Sorry ich habe nicht kapiert,
> wie man hier dir dritte Wurzel eingibt)
>  


So:

\wurzel[3]{-T}


Das sieht dann so aus: [mm]\wurzel[3]{-T}[/mm]


> [mm]x_{2}= x_{1}w_{1}[/mm]
>  und
> [mm]x_{3}= x_{1}w_{1},[/mm]
>  wobei [mm]w_{1}[/mm] der dritten einheitswurzel
> entspricht mit der Form
> [mm]w_{1}=\bruch{1}{2}(-1+I\wurzel{3})[/mm]
>  Hallo zusammen.
>  ich bin beim durchblättern eines Mathebuches auf die
> obigen Angaben gestoßen.
>  Die grundlegende Definition der Komlexen Zahl ist mir
> bekannt, dennoch kann ich der Angaben hier nicht wirklich
> folgen.
>  
> Die Lösung [mm]x_{1}[/mm] ist mir klar.
>  Wie und wiso jedoch kommt man auf die anderen beiden
> Lösungen.
> Ich habe bereits gegoogelt, aber leider keine Erklärung
> und / oder Herleitung "für dummies"gefunden.
>  Ich würde mich sehr frreuen, wenn mir jemand dieses
> Geschehen genauer erläutern könnte.


Schreibe dazu die Zahl -T in der kompelexen Exponentialform:

[mm]-T=\vmat{-T}*e^{i*\phi[/mm]

,wobei [mm]\phi \in \{0, \ \pi\}[/mm]

Dann lautet die zu lösende Glechung:

[mm]x^{3}=\vmat{-T}*e^{i*\phi[/mm]

Die Lösungen ergeben sich aufgrund
der Periodizität der kompelexen Exponentialform zu:

[mm]x_{k}=\wurzel[3]{\vmat{-T}}*e^{i*\bruch{\phi+k*2*\pi}{3}}, \ k=0,1,2[/mm]

Oder in der Form a+bi:

[mm]x_{k}=\wurzel[3]{\vmat{-T}}*\left(\ \cos\left(\bruch{\phi+k*2*\pi}{3}\right)+i*\sin\left(\bruch{\phi+k*2*\pi}{3}\right) \ \right), \ k=0,1,2[/mm]


>  Vielen Dank im voraus
>  


Gruss
MathePower

Bezug
                
Bezug
Lösung reinkubischer Gleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Mi 05.11.2014
Autor: Windbeutel

Danke für deine Erklärung

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]