matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung inhomogene DGL 1.Ordnun
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung inhomogene DGL 1.Ordnun
Lösung inhomogene DGL 1.Ordnun < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung inhomogene DGL 1.Ordnun: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:58 Sa 02.07.2011
Autor: Dark.Rider

Aufgabe
y'-(2cos x)y=cos x

Hallo!

Ich suche den Lösungsweg für die o.g. DGL. Sie soll mittels Variation der Konstanten gelöst werden (es ist eine Aufgabe aus dem Papula). An für sich ist es mir klar, wie es funktioniert, nur beim letzten Schritt, der Integration von K'(x) scheitert es:

y'-(2cos x)y=cos x

Homogene Lösung (stimmt mit Papula auch überein):
[mm] y_{h}=Ce^{2sin(x)} [/mm]

Nun gehts weiter mit der Variation der Konstanten:

[mm] y=K(x)e^{2sin(x)} [/mm]
[mm] y'=K'(x)e^{2sin(x)}+2K(x)(cos x)e^{2sin(x)} [/mm]

Eingesetzt in DGL:

[mm] K'(x)e^{2sin(x)}+2K(x)(cos x)e^{2sin(x)}- [/mm] (2 cos x) [mm] K(x)e^{2sin(x)}= [/mm] cos x

Die K(x)-Terme heben sich auch wie sie sollen auf:

[mm] K'(x)e^{2sin(x)}= [/mm] cos x

[mm] K'(x)=\bruch{cos x}{e^{2sin(x)}} [/mm]

und jetzt kommt das Problem:

[mm] K(x)=\integral_{}^{}{\bruch{cos x}{e^{2sin(x)}} dx} [/mm]

Ich weiss keinen Weg diesen Term zu integrieren.

Die Lösung des DGLs soll sein:

[mm] y=Ce^{2sin(x)}-0.5 [/mm]

Bin für Hinweise dankbar!

Gruss
Thomas

        
Bezug
Lösung inhomogene DGL 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 02.07.2011
Autor: MathePower

Hallo Dark.Rider,

> y'-(2cos x)y=cos x
>  Hallo!
>  
> Ich suche den Lösungsweg für die o.g. DGL. Sie soll
> mittels Variation der Konstanten gelöst werden (es ist
> eine Aufgabe aus dem Papula). An für sich ist es mir klar,
> wie es funktioniert, nur beim letzten Schritt, der
> Integration von K'(x) scheitert es:
>  
> y'-(2cos x)y=cos x
>  
> Homogene Lösung (stimmt mit Papula auch überein):
>  [mm]y_{h}=Ce^{2sin(x)}[/mm]
>  
> Nun gehts weiter mit der Variation der Konstanten:
>  
> [mm]y=K(x)e^{2sin(x)}[/mm]
>  [mm]y'=K'(x)e^{2sin(x)}+2K(x)(cos x)e^{2sin(x)}[/mm]
>  
> Eingesetzt in DGL:
>  
> [mm]K'(x)e^{2sin(x)}+2K(x)(cos x)e^{2sin(x)}-[/mm] (2 cos x)
> [mm]K(x)e^{2sin(x)}=[/mm] cos x
>  
> Die K(x)-Terme heben sich auch wie sie sollen auf:
>  
> [mm]K'(x)e^{2sin(x)}=[/mm] cos x
>  
> [mm]K'(x)=\bruch{cos x}{e^{2sin(x)}}[/mm]
>  
> und jetzt kommt das Problem:
>  
> [mm]K(x)=\integral_{}^{}{\bruch{cos x}{e^{2sin(x)}} dx}[/mm]
>  
> Ich weiss keinen Weg diesen Term zu integrieren.


Substituiere [mm]z=2*\sin\left(x\right)[/mm]


>  
> Die Lösung des DGLs soll sein:
>  
> [mm]y=Ce^{2sin(x)}-0.5[/mm]
>  
> Bin für Hinweise dankbar!
>  
> Gruss
>  Thomas


Gruss
MathePower

Bezug
                
Bezug
Lösung inhomogene DGL 1.Ordnun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 02.07.2011
Autor: Dark.Rider

Danke!

Bezug
        
Bezug
Lösung inhomogene DGL 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 02.07.2011
Autor: leduart

Hallo
substituiere in deinem integral sinx=u du=cosx dx
Gruss leduart


Bezug
                
Bezug
Lösung inhomogene DGL 1.Ordnun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Sa 02.07.2011
Autor: Dark.Rider

Danke auch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]