matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationLösung eines Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Lösung eines Integrals
Lösung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung eines Integrals: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 02.11.2009
Autor: Kainor

Aufgabe
[mm] \integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}= [/mm] ??? = [mm] \bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])} [/mm]

Das Ergebnis kenn ich aber der Weg dort hin ist mir ein Rätsel.

        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> [mm]\integral_{}^{}{\bruch{1}{\wurzel{-1+cos(x)}} dx}=[/mm] ??? =
> [mm]\bruch{(2 *ln(Tan[x/4]) *Sin[x/2])}{\wurzel(-1 + Cos[x])}[/mm]


Das Problem ist, daß der Ausdruck unter der Wurzel [mm]\le 1[/mm] ist.

Stünde hier

[mm]\integral_{}^{}{\bruch{1}{\wurzel{1-cos(x)}} dx}[/mm]

so wäre hiervon

[mm]2 *ln(Tan[x/4])[/mm]

eine Stammfunktion.


>  
> Das Ergebnis kenn ich aber der Weg dort hin ist mir ein
> Rätsel.


Gruss
MathePower

Bezug
                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 02.11.2009
Autor: Kainor

mMn ist der Ausdruck -1 [mm] \le [/mm] x [mm] \le [/mm] 0
;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe ich noch mal abgleitet und vereinfacht und es kommt tatsächlich raus (mit dem PC)

Bezug
                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> mMn ist der Ausdruck -1 [mm]\le[/mm] x [mm]\le[/mm] 0
> ;) ,ja aber es muss ja trotzdem gehen. Das Ergebnis habe
> ich noch mal abgleitet und vereinfacht und es kommt
> tatsächlich raus (mit dem PC)  


Nun, da hat man sich wohl mit einem Trick beholfen:

[mm]ln(Tan[x/4])*\blue{1}=ln(Tan[x/4])*\blue{\wurzel{2}*\bruch{Sin[x/2]}{\wurzel{1 - Cos[x]}}}[/mm]

Gemäß Additionstheoremen gilt:

[mm]1-\cos\left(x\right)=2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Lösung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 02.11.2009
Autor: Kainor

Also ich versteh grad nicht wie mir das helfen soll

[mm] ln(Tan[x/4])\cdot{}\blue{1} [/mm] ist ja keine Lösung meine Integrals sondern von

1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2 subst. habe und dann blieb da [mm] \wurzel{-2}=i*\wurzel{2} [/mm] unter der Wurzel stehen da würde ja dann die [mm] \wurzel{2} [/mm] von deinem Ansatz wegfallen, aber das i bleibt

Bezug
                                        
Bezug
Lösung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mo 02.11.2009
Autor: MathePower

Hallo Kainor,

> Also ich versteh grad nicht wie mir das helfen soll


Wendet man das Additionstheoorem

[mm]\cos\left(x\right)=1-2*\sin^{2}\left(\bruch{x}{2}\right)[/mm]

und anschliessend die trigonometrische Substitution

[mm]\tan\left(\bruch{x}{4}\right)=t[/mm]

an, dann kommt man auf die Stammfunktion

[mm]ln(Tan[x/4])[/mm]


>  
> [mm]ln(Tan[x/4])\cdot{}\blue{1}[/mm] ist ja keine Lösung meine
> Integrals sondern von


Beachte, daß [mm]-1+\cos\left(x}\right)=\left(-1\right)*\left(\cos\left(x\right)-1\right)[/mm]

Daher bleibt auch ein "i" im Nenner stehen.


>  
> 1-cos(x) ... obwohl ich hatte mal ein Ansatz wo ich t=x/2
> subst. habe und dann blieb da [mm]\wurzel{-2}=i*\wurzel{2}[/mm]
> unter der Wurzel stehen da würde ja dann die [mm]\wurzel{2}[/mm]
> von deinem Ansatz wegfallen, aber das i bleibt


Das ist richtig.


Gruss
MathePower

Bezug
                                                
Bezug
Lösung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 02.11.2009
Autor: Kainor

Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]