matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenLösung einer Textaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Lösung einer Textaufgabe
Lösung einer Textaufgabe < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Textaufgabe: Kann keine Lösung finden...
Status: (Frage) beantwortet Status 
Datum: 18:33 Sa 11.02.2012
Autor: xxbuschixx

Aufgabe
Eine Parabel 4. Grade hat im Nullpunkt des Koordinatensystems die Wendetangente mit der Gleichung y=x und im Punkt P(2/4) die Steigung null. Wie lautet der Funktionsterm?

Ich sitze an der Aufgabe schon einige Zeit aber immer wieder finde ich in meiner Rechnung Fehler. Kann mir jemand den Rechenweg zeigen und falls möglich auch die Lösung sagen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung einer Textaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Sa 11.02.2012
Autor: angela.h.b.


> Eine Parabel 4. Grade hat im Nullpunkt des
> Koordinatensystems die Wendetangente mit der Gleichung y=x
> und im Punkt P(2/4) die Steigung null. Wie lautet der
> Funktionsterm?
>  Ich sitze an der Aufgabe schon einige Zeit aber immer
> wieder finde ich in meiner Rechnung Fehler. Kann mir jemand
> den Rechenweg zeigen und falls möglich auch die Lösung
> sagen?

Hallo,

[willkommenmr].

Das Forum funktioniert etwas anders: Du sagst uns, was Du überlegt und getan hast und zeigst uns Deine Rechnungen, und wir helfen Dir dann mit Tips oder indem wir Dir sagen, wo Du einen Fehler gemacht hast.

LG Angela

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Lösung einer Textaufgabe: Lösung mit Gauß
Status: (Antwort) fertig Status 
Datum: 01:19 So 12.02.2012
Autor: MyBear

Hej,

gegeben ist:
0. Es handelt sich um eine Parabel 4ten Grades:
   => [mm]f(x) = ax^4 + bx^3+cx^2+dx+e[/mm]
   => [mm]f'(x) = 4ax^3 + 3bx^2 + 2cx + d[/mm]
   => [mm]f''(x) = 12a^2 + 6bx + 2c[/mm]
1. Sie geht durch den Nullpunkt => [mm]f(0) = 0[/mm]
2. Die Steigung an der Stelle 0 ist bei y=x 1 => [mm]f'(0) = 1[/mm]
3. An der Stelle 0 ist ein Wendepunkt => [mm]f''(0) = 0[/mm]
4. Sie geht durch den Punkt (2|4) => [mm]f(2) = 4[/mm]
5. Die Steigung an der Stelle 2 ist 0 => [mm]f'(2) = 0[/mm]

Daraus ergeben sich durch einsetzen von x bspw. folgende Gleichungen:
I. [mm]f(0) = 0^4*a + 0^3*b + 0^2*c+0*d+1*e = 0[/mm]
V. [mm]f'(2) = 12*2^2*a+6*2*b + 2*c = 0[/mm]

Umgesetzt in eine Tabelle sieht das Ganze dann wie folgt aus:
1:       a   b   c   d   e |
2: I.    0   0   0   0   1 | 0
3: II.   0   0   0   1   0 | 1
4: III.  0   0   2   0   0 | 0
5: IV.  16   8   4   2   1 | 4
6: V.   32   12  4   1   0 | 0
Nach Anwendung des Gauß'schen Eliminations-Verfahrens bekomme ich daraus folgende Ergebnisse:
e = 0
d = 1
c = 0
e = [mm]-\bruch{1}{2}[/mm]
d = [mm]\bruch{5}{4}[/mm]

Damit ergibt sich der Funktionserm [mm]f(x) = -\bruch{1}{2} x^4 + \bruch{5}{4}x^3+x[/mm].

Ich hab's auch mal in GeoGebra eingegeben und es scheint zu passen.
[Dateianhang nicht öffentlich]

Probier's am besten weiter, bei den Eliminations-Tabellen verrechne ich mich auch ständig, deshalb benutze ich ein Programm zum Vergleichen, wie z.B. eine Tabellenkalkulation, weil man damit Zeilen-Funktionen wie V-II gut abbilden kann.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]