matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Lösung einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Lösung einer Gleichung
Lösung einer Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Gleichung: Erklärung eines Schrittes
Status: (Frage) beantwortet Status 
Datum: 13:38 Do 07.07.2011
Autor: Windbeutel

Aufgabe
Löse folgendes Gleichungssystem
a(x+y) =b
b(x-y) =a

Hallo, ich bräuchte dringend Hilfe bei einem Rechnungsschritt diesem Gleichungssystem.

bisher bin ich soweit:

y= [mm] \bruch{b}{a} [/mm] - [mm] \bruch{a²+b²}{2ab} [/mm]
x= [mm] \bruch{a² + b²}{2ab} [/mm]

Laut Lösungsheft ist das Ergebniss des folgenden Schrittes

y= [mm] \bruch{2b²}{2ab} [/mm] - [mm] \bruch{a²+b²}{2ab} [/mm]
x= [mm] \bruch{a² + b²}{2ab} [/mm]

Ich verstehe einfach nicht wie dieser Schritt zustande kommt, wie komme ich von
y= [mm] \bruch{b}{a} [/mm] - [mm] \bruch{a²+b²}{2ab} [/mm]
zu
y= [mm] \bruch{2b²}{2ab} [/mm] - [mm] \bruch{a²+b²}{2ab} [/mm]

Bitte helft mir weiter, ich verzweifle noch an diesem Schritt

        
Bezug
Lösung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 07.07.2011
Autor: Marcel08

Hallo!


> Löse folgendes Gleichungssystem
>  a(x+y) =b
>  b(x-y) =a
>  Hallo, ich bräuchte dringend Hilfe bei einem
> Rechnungsschritt diesem Gleichungssystem.
>  
> bisher bin ich soweit:
>  
> y= [mm]\bruch{b}{a}[/mm] - [mm]\bruch{a²+b²}{2ab}[/mm]
>  x= [mm]\bruch{a² + b²}{2ab}[/mm]
>  
> Laut Lösungsheft ist das Ergebniss des folgenden Schrittes
>
> y= [mm]\bruch{2b²}{2ab}[/mm] - [mm]\bruch{a²+b²}{2ab}[/mm]
>  x= [mm]\bruch{a² + b²}{2ab}[/mm]


Also wenn ich jetzt nicht total von der Rolle bin, ist das falsch. Man kann durch Umstellen von a bzw. b die Gleichungen voneinander addieren, bzw. subtrahieren und erhält:

[mm] x=\bruch{1}{2}\bruch{b^{2}+a^{2}}{ab} [/mm]

[mm] y=\bruch{1}{2}\bruch{b^{2}-a^{2}}{ab} [/mm]



> Ich verstehe einfach nicht wie dieser Schritt zustande
> kommt, wie komme ich von
> y= [mm]\bruch{b}{a}[/mm] - [mm]\bruch{a²+b²}{2ab}[/mm]
>  zu
>  y= [mm]\bruch{2b²}{2ab}[/mm] - [mm]\bruch{a²+b²}{2ab}[/mm]


Im Allgemeinen ist: [mm] \bruch{b}{a}-\bruch{a²+b²}{2ab}\not=\bruch{2b²}{2ab}-\bruch{a²+b²}{2ab} [/mm]



> Bitte helft mir weiter, ich verzweifle noch an diesem
> Schritt





Gruß, Marcel


Bezug
        
Bezug
Lösung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Do 07.07.2011
Autor: schachuzipus

Hallo Windbeutel,

du musst die Exponenten mit dem Dach ^ links neben der 1 eintippen, sonst werden sie nicht angezeigt.

Also etwa [mm]\frac{a^2+b^2}{2ab}[/mm] mittels \bruch{a^2+b^2}{2ab}

Sowas bitte immer vor (!!) dem Absenden mit der Vorschaufunktion kontrollieren!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]