matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieLösung der Kongruenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Lösung der Kongruenz
Lösung der Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 05.02.2007
Autor: frustriert

Aufgabe
Zeigen Sie: Zwar besitzt die Gleichung 21xy - 7x -3y +1 = 0 keine Lösungen in [mm] \IZ [/mm] x [mm] \IZ, [/mm] aber die Kongruenz 21 xy -7x -3y +1 [mm] \equiv [/mm] 0 mod m ist lösbar für jedes natürliche m>1

Hallo, ich bins schon wieder!

Für den ersten Teil der Aufgabe habe ich die obige Gleichung schon zu (7x-1)*(3y-1) = 0 umgestellt und kam somit zu den Lösungen x = 1/7 [mm] \not\in \IZ [/mm] und y = 1/3 [mm] \not\in \IZ. [/mm]

Beim zweiten Teil weiß ich leider nicht mehr weiter. Es muss ja 7x  [mm] \equiv [/mm] 1 mod m und 3y [mm] \equiv [/mm] 1 mod m erfüllt werden, aber wie geht es jetzt weiter?

Wäre toll, wenn mir jemand helfen könnte!

Grüße,
Maren

        
Bezug
Lösung der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Di 06.02.2007
Autor: unknown

Hallo Maren,




Der erste Teil sieht ja schonmal recht gut aus.

> Beim zweiten Teil weiß ich leider nicht mehr weiter. Es
> muss ja 7x  [mm]\equiv[/mm] 1 mod m und 3y [mm]\equiv[/mm] 1 mod m erfüllt
> werden, aber wie geht es jetzt weiter?

Jein, $7x [mm] \equiv [/mm] 1 [mm] \pmod{m}$ [/mm] oder (nicht "und") $3y [mm] \equiv [/mm] 1 [mm] \pmod{m}$ [/mm] sind hier im Allgemeinen nur hinreichende aber keine notwendigen Bedingungen, da der Ring [mm] $\IZ_m$ [/mm] je nach $m$ Nullteiler enthalten kann. Zum Beispiel ist $x = 1 = y$ eine Lösung für $m = 4$, obwohl $7 [mm] \equiv [/mm] 3 [mm] \not\equiv [/mm] 1 [mm] \pmod{m}$ [/mm] gilt.

Du kannst natürlich trotzdem versuchen, so vorzugehen. Falls $m$ kein Vielfaches von $21$ ist, kann man (warum?) immer $x$ oder $y$ finden mit $7x [mm] \equiv [/mm] 1 [mm] \pmod{m}$ [/mm] oder $3y [mm] \equiv [/mm] 1 [mm] \pmod{m}$. [/mm] Bei den Vielfachen von $21$ muß sich allerdings etwas anderes überlegen. Versuch doch mal Folgendes: Sei $m = [mm] 3^j 7^k [/mm] z$ mit $3 [mm] \;\not|\; [/mm] z$ und $7 [mm] \;\not|\; [/mm] z$ sowie $j [mm] \geq [/mm] 1$ und $k [mm] \geq [/mm] 1$. In der ursprünglichen Gleichung $21xy - 7x - 3y + 1 [mm] \equiv [/mm] 0 [mm] \pmod{m}$ [/mm] könnte man etwa $x = [mm] 7^{k-1} \tilde{x}$ [/mm] und $y = [mm] 3^{j-1} [/mm] z [mm] \tilde{y}$ [/mm] setzen. Dann muß man die Kongruenz $1 [mm] \equiv 7^k\tilde{x} [/mm] + [mm] (3^j [/mm] z) [mm] \tilde{y} \pmod{m}$ [/mm] lösen. Ich behaupte einfach mal, daß das jetzt etwas einfacher geworden ist: Man kann $1 = [mm] 7^{k}\tilde{x} [/mm] + [mm] (3^{j} [/mm] z) [mm] \tilde{y}$ [/mm] sogar schon in [mm] $\IZ$ [/mm] lösen.


> Wäre toll, wenn mir jemand helfen könnte!

Hoffe, das konnte ich.

Bezug
                
Bezug
Lösung der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Di 06.02.2007
Autor: frustriert

Hallo unknown!

> Jein, [mm]7x \equiv 1 \pmod{m}[/mm] oder (nicht "und") [mm]3y \equiv 1 \pmod{m}[/mm]
> sind hier im Allgemeinen nur hinreichende aber keine
> notwendigen Bedingungen, da der Ring [mm]\IZ_m[/mm] je nach [mm]m[/mm]
> Nullteiler enthalten kann. Zum Beispiel ist [mm]x = 1 = y[/mm] eine
> Lösung für [mm]m = 4[/mm], obwohl [mm]7 \equiv 3 \not\equiv 1 \pmod{m}[/mm]
> gilt.

Habe ich verstanden, klar.

> Du kannst natürlich trotzdem versuchen, so vorzugehen.
> Falls [mm]m[/mm] kein Vielfaches von [mm]21[/mm] ist, kann man (warum?) immer
> [mm]x[/mm] oder [mm]y[/mm] finden mit [mm]7x \equiv 1 \pmod{m}[/mm] oder [mm]3y \equiv 1 \pmod{m}[/mm].

Weil somit (7,m)=1 bzw. (3,m)=1 und es dann ein Inverses gibt?

Ab hier verstehe ich leider fast gar nichts mehr...

> Bei den Vielfachen von [mm]21[/mm] muß sich allerdings etwas anderes
> überlegen. Versuch doch mal Folgendes: Sei [mm]m = 3^j 7^k z[/mm]
> mit [mm]3 \;\not|\; z[/mm] und [mm]7 \;\not|\; z[/mm] sowie [mm]j \geq 1[/mm] und [mm]k \geq 1[/mm].
> In der ursprünglichen Gleichung [mm]21xy - 7x - 3y + 1 \equiv 0 \pmod{m}[/mm]
> könnte man etwa [mm]x = 7^{k-1} \tilde{x}[/mm] und [mm]y = 3^{j-1} z \tilde{y}[/mm]
> setzen. Dann muß man die Kongruenz [mm]1 \equiv 7^k\tilde{x} + (3^j z) \tilde{y} \pmod{m}[/mm]
> lösen.

Wie kommst du darauf?

> Ich behaupte einfach mal, daß das jetzt etwas
> einfacher geworden ist: Man kann [mm]1 = 7^{k}\tilde{x} + (3^{j} z) \tilde{y}[/mm]
> sogar schon in [mm]\IZ[/mm] lösen.

Leider nicht, ich bin jetzt total durcheinander...



Bezug
                        
Bezug
Lösung der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 06.02.2007
Autor: unknown

Hallo nochmal!


Schön, daß wir uns im ersten Teil schonmal einig sind. Die Aussage mit dem ggT ist genau das, was ich meinte.

> Ab hier verstehe ich leider fast gar nichts mehr...

Wollen mal sehen, ob wir das ändern können.

>  > Bei den Vielfachen von [mm]21[/mm] muß sich allerdings etwas

> anderes
> > überlegen. Versuch doch mal Folgendes: Sei [mm]m = 3^j 7^k z[/mm]
> > mit [mm]3 \;\not|\; z[/mm] und [mm]7 \;\not|\; z[/mm] sowie [mm]j \geq 1[/mm] und [mm]k \geq 1[/mm].
> > In der ursprünglichen Gleichung [mm]21xy - 7x - 3y + 1 \equiv 0 \pmod{m}[/mm]
> > könnte man etwa [mm]x = 7^{k-1} \tilde{x}[/mm] und [mm]y = 3^{j-1} z \tilde{y}[/mm]
> > setzen. Dann muß man die Kongruenz [mm]1 \equiv 7^k\tilde{x} + (3^j z) \tilde{y} \pmod{m}[/mm]
> > lösen.
>  Wie kommst du darauf?

Naja, wenn ich [mm] $\tilde{x}$ [/mm] und [mm] $\tilde{y}$ [/mm] finden kann, die $1 [mm] \equiv 7^k\tilde{x} [/mm] + [mm] (3^j [/mm] z) [mm] \tilde{y} \pmod{m}$ [/mm] lösen, dann lösen $x = [mm] 7^{k-1}\tilde{x}$ [/mm] und $y = [mm] 3^{j-1} [/mm] z [mm] \tilde{y}$ [/mm] doch die ursprüngliche Gleichung:
  
     [mm] $\begin{matrix} 21xy - 7x - 3y + 1 &=& (3\cdot7) 7^{k-1} \tilde{x} 3^{j-1} z \tilde{y} - 7\cdot7^{k-1}\tilde{x} - 3\cdot3^{j-1}z\tilde{y} + 1 \\ &=& \underbrace{3^j 7^k z}_{= m} \tilde{x}\tilde{y} - 7^k \tilde{x} - (3^j z) \tilde{y} + 1 \\ &\equiv& 1 - 7^k\tilde{x} - (3^j z) \tilde{y} &\equiv& 0 \pmod{m}. \end{matrix}$ [/mm]

> > Ich behaupte einfach mal, daß das jetzt etwas
> > einfacher geworden ist: Man kann [mm]1 = 7^{k}\tilde{x} + (3^{j} z) \tilde{y}[/mm]
> > sogar schon in [mm]\IZ[/mm] lösen.
>  
> Leider nicht, ich bin jetzt total durcheinander...

Der Trick hierbei ist [mm] $(7^k, 3^j [/mm] z) = 1$, da $7 [mm] \not|\; [/mm] z$. Jetzt gibt es einen Satz über den ggT in Hauptidealbereichen (alternativ der erweiterte Euklidische Algorithmus), der etwas über die Lösbarkeit der Gleichung [mm] $7^k \tilde{x} [/mm] + [mm] (3^j [/mm] z) [mm] \tilde{y} [/mm] = 1$ aussagt.  


Vielleicht kommst Du jetzt weiter.

Bezug
                                
Bezug
Lösung der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 07.02.2007
Autor: frustriert

Hallo auch von mir nochmal!

> Naja, wenn ich [mm]\tilde{x}[/mm] und [mm]\tilde{y}[/mm] finden kann, die [mm]1 \equiv 7^k\tilde{x} + (3^j z) \tilde{y} \pmod{m}[/mm]
> lösen, dann lösen [mm]x = 7^{k-1}\tilde{x}[/mm] und [mm]y = 3^{j-1} z \tilde{y}[/mm]
> doch die ursprüngliche Gleichung:
>    
> [mm]$\begin{matrix} 21xy - 7x - 3y + 1 &=& (3\cdot7) 7^{k-1} \tilde{x} 3^{j-1} z \tilde{y} - 7\cdot7^{k-1}\tilde{x} - 3\cdot3^{j-1}z\tilde{y} + 1 \\ &=& \underbrace{3^j 7^k z}_{= m} \tilde{x}\tilde{y} - 7^k \tilde{x} - (3^j z) \tilde{y} + 1 \\ &\equiv& 1 - 7^k\tilde{x} - (3^j z) \tilde{y} &\equiv& 0 \pmod{m}. \end{matrix}$[/mm]

Ok, das habe ich jetzt auch verstanden.

> Der Trick hierbei ist [mm](7^k, 3^j z) = 1[/mm], da [mm]7 \not|\; z[/mm].
> Jetzt gibt es einen Satz über den ggT in
> Hauptidealbereichen (alternativ der erweiterte Euklidische
> Algorithmus), der etwas über die Lösbarkeit der Gleichung
> [mm]7^k \tilde{x} + (3^j z) \tilde{y} = 1[/mm] aussagt.

Naja, leider habe ich immer noch nicht so den Durchblick. Ich weiss nur, dass es aufgrund [mm](7^k, 3^j z) = 1[/mm] nun eindeutig bestimmte Lösungen für [mm]\tilde {x} [/mm] und [mm] \tilde {y} [/mm] gibt. Ich kann aber irgendwie nicht mit den Zahlen  [mm]7^k [/mm] und [mm] 3^j z [/mm] umgehen...

Trotzdem schon mal Danke für die ganzen vorherigen Tips!


Bezug
                                        
Bezug
Lösung der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 07.02.2007
Autor: unknown

Moin,


> > Der Trick hierbei ist [mm](7^k, 3^j z) = 1[/mm], da [mm]7 \not|\; z[/mm].
> > Jetzt gibt es einen Satz über den ggT in
> > Hauptidealbereichen (alternativ der erweiterte Euklidische
> > Algorithmus), der etwas über die Lösbarkeit der Gleichung
> > [mm]7^k \tilde{x} + (3^j z) \tilde{y} = 1[/mm] aussagt.
>  
> Naja, leider habe ich immer noch nicht so den Durchblick.
> Ich weiss nur, dass es aufgrund [mm](7^k, 3^j z) = 1[/mm] nun
> eindeutig bestimmte Lösungen für [mm]\tilde {x}[/mm] und [mm]\tilde {y}[/mm]
> gibt. Ich kann aber irgendwie nicht mit den Zahlen  [mm]7^k[/mm] und
> [mm]3^j z[/mm] umgehen...

Ich verstehe Dein Problem nicht. Wenn Du weißt, daß es [mm] $\tilde{x}$ [/mm] und [mm] $\tilde{y}$ [/mm] gibt, die die Gleichung [mm] $7^k \tilde{x} [/mm] + [mm] (3^j [/mm] z) [mm] \tilde{y} [/mm] = 1$ lösen, dann gilt doch insbesondere auch $1 - [mm] 7^k \tilde{x} [/mm] - [mm] (3^j [/mm] z) [mm] \tilde{y} \equiv [/mm] 0 [mm] \pmod{m}$. [/mm] Naja, und mit der Rechnung weiter oben ist dann $x = [mm] 7^{k-1}\tilde{x}$ [/mm] und $y = [mm] 3^{j-1}z\tilde{y}$ [/mm] eine Lösung der ursprünglichen Kongruenz $21xy - 7x - 3y + 1 [mm] \equiv [/mm] 0 [mm] \pmod{m}$. [/mm] Und mehr war doch gar nicht verlangt, oder?

  

> Trotzdem schon mal Danke für die ganzen vorherigen Tips!

Freut mich, daß ich helfen konnte.  


Bezug
                                                
Bezug
Lösung der Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Do 08.02.2007
Autor: frustriert

Ach jetzt... ;-)

Ich habe die ganze Zeit geglaubt, ich müsste eine "spezielle Zahl" als Lösung angeben, dabei sollte ich ja nur zeigen, dass die Kongruenz mod m lösbar ist...

Danke nochmal!

Bezug
        
Bezug
Lösung der Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Di 06.02.2007
Autor: blascowitz

Guten Abend. Ich wollte mal meine Idee zu der Aufgabe 21xy-3x-7y+1 [mm] \equiv [/mm] 0 mod m anbieten.

Also ich würde zwei Fälle unterscheiden

Fall 1 [mm] m\in \mathcal{P}. [/mm]

(7x-1)*(3y-1) ist niemals eine Primzahl, da x,y [mm] \in \IZ [/mm] und die Zahl immer mindestens zwei Teiler von 1 verschieden hat. Da das so ist ist die Konkruenz hier bewiesen aufgrund der Eindeutigkeit der Primfaktorenzerlegung.


Ist m keine Primzahl, lässt sich m in Primfaktoren zerlegen, für die dann (7x-1)*(3y-1= [mm] \equiv [/mm] 0 mod allen Primteilern von m. Da das nun wieder Primteiler sind und (7x-1)*(3y-1) niemals eine Primzahl wird sind die kongruenzen auch hier aufgrund der Eindeutigkeit der Primfaktorenzerlegung gegeben. Ist (7x-1)*(3y-1) durch alle Primfaktoren teilbar, so ist es auch teilbar durch das Produkt der Primfaktoren. q.e.d.

Ich hoffe ich liege nicht ganz falsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]