matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLösung der Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Lösung der Gleichungen
Lösung der Gleichungen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung der Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 16.10.2008
Autor: SirSmoke

Aufgabe
z sei eine komplexe Lösung der Gleichung [mm] z^4+z^3+z^2+z+1=0. [/mm] Zeige:

(i) [mm] \overline{z} [/mm] = [mm] z^{-1} [/mm]  ,  (ii) [mm] z+z^{-1} [/mm] genügt einer quadratischen Gleichung mit rationalen Koeffizienten
(iii) Drücke Real- und Imaginärteil von z mit Hilfe von reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo liegen diese Lösungen in der komplexen Zahlenebene?

Hallo!
Ich habe zu dieser Aufgabe Tipps gelesen und zwar:

(i) Gleichung mit (z-1) mulitiplizieren
(ii) Gleichung durch [mm] z^2 [/mm] teilen und dann versuchen [mm] (\bruch{z+1}{z})^2 [/mm] auszuklammern
(iii) [mm] z+\overline{z}=a+bi [/mm] + a-bi=... und dann die Gleichung aus (ii) einsetzen.

Nur irgendwie komme ich mit diesen Tipps auch nich so recht weiter.
Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:

[mm] z^5-1=0 [/mm]

Nur was soll ich damit anfangen?

Bei (ii) [mm] (\bruch{z+1}{z})^2*z^2+z+1=0 [/mm]

Kann mir bitte jemand helfen :(

        
Bezug
Lösung der Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Do 16.10.2008
Autor: abakus


> z sei eine komplexe Lösung der Gleichung [mm]z^4+z^3+z^2+z+1=0.[/mm]
> Zeige:
>  
> (i) [mm]\overline{z}[/mm] = [mm]z^{-1}[/mm]  ,  (ii) [mm]z+z^{-1}[/mm] genügt einer
> quadratischen Gleichung mit rationalen Koeffizienten
>  (iii) Drücke Real- und Imaginärteil von z mit Hilfe von
> reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo
> liegen diese Lösungen in der komplexen Zahlenebene?
>  Hallo!
>  Ich habe zu dieser Aufgabe Tipps gelesen und zwar:
>  
> (i) Gleichung mit (z-1) mulitiplizieren
>  (ii) Gleichung durch [mm]z^2[/mm] teilen und dann versuchen
> [mm](\bruch{z+1}{z})^2[/mm] auszuklammern
>  (iii) [mm]z+\overline{z}=a+bi[/mm] + a-bi=... und dann die
> Gleichung aus (ii) einsetzen.
>  
> Nur irgendwie komme ich mit diesen Tipps auch nich so recht
> weiter.
>  Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:
>  
> [mm]z^5-1=0[/mm]
>  
> Nur was soll ich damit anfangen?
>  
> Bei (ii) [mm](\bruch{z+1}{z})^2*z^2+z+1=0[/mm]
>  
> Kann mir bitte jemand helfen :(

Aus [mm] z^5-1=0 [/mm] folgt [mm] z^5=1. [/mm] Die 5 Lösungen dieser Gleichung lassen sich mit der Formel von Moivre leicht ermitteln.
Gruß Abakus



Bezug
                
Bezug
Lösung der Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Do 16.10.2008
Autor: abakus


> > z sei eine komplexe Lösung der Gleichung [mm]z^4+z^3+z^2+z+1=0.[/mm]
> > Zeige:
>  >  
> > (i) [mm]\overline{z}[/mm] = [mm]z^{-1}[/mm]  ,  (ii) [mm]z+z^{-1}[/mm] genügt einer
> > quadratischen Gleichung mit rationalen Koeffizienten
>  >  (iii) Drücke Real- und Imaginärteil von z mit Hilfe von
> > reellen Quadratwurzeln aus. Wieviele Lösungen z gibt es? Wo
> > liegen diese Lösungen in der komplexen Zahlenebene?
>  >  Hallo!
>  >  Ich habe zu dieser Aufgabe Tipps gelesen und zwar:
>  >  
> > (i) Gleichung mit (z-1) mulitiplizieren
>  >  (ii) Gleichung durch [mm]z^2[/mm] teilen und dann versuchen
> > [mm](\bruch{z+1}{z})^2[/mm] auszuklammern
>  >  (iii) [mm]z+\overline{z}=a+bi[/mm] + a-bi=... und dann die
> > Gleichung aus (ii) einsetzen.
>  >  
> > Nur irgendwie komme ich mit diesen Tipps auch nich so recht
> > weiter.
>  >  Wenn ich bei (i) mit (z-1) multiplizier bekomme ich:
>  >  
> > [mm]z^5-1=0[/mm]
>  >  
> > Nur was soll ich damit anfangen?
>  >  
> > Bei (ii) [mm](\bruch{z+1}{z})^2*z^2+z+1=0[/mm]
>  >  
> > Kann mir bitte jemand helfen :(
>
> Aus [mm]z^5-1=0[/mm] folgt [mm]z^5=1.[/mm] Die 5 Lösungen dieser Gleichung
> lassen sich mit der Formel von Moivre leicht ermitteln.
>  Gruß Abakus
>  
>  

Ach so, und z+1/z ist hier 2*cos 72° (bzw. -2*cos 72°). Der Wert dieses Terms ist Lösung einer quadratischen Gleichung (hängt irgendwie mit dem goldenen Schnitt zusammen, da steckt was mit  [mm] \wurzel{5} [/mm] drin).

Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]