matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung der DGL bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lösung der DGL bestimmen
Lösung der DGL bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung der DGL bestimmen: Rückfrage, Idee, Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:46 Mi 11.07.2018
Autor: Dom_89

Aufgabe
Bestimme für die Differentialgleichung die reale Lösung

[mm] y^{4}(x)-y(x)=e^{2x} [/mm]

Hallo,

ich wollte bei der o.g. Aufgabe zunächst die zugehörige homogene Lösung ermitteln und bin nun leider wieder über eine Sache gestolpert.

Hier mein bisheriger Ansatz:

[mm] y^{4}(x)-y(x)=e^{2x} [/mm]

[mm] \lambda^{4}-1=0 [/mm]

[mm] \lambda^{4} [/mm] = 1

[mm] \lambda [/mm] = [mm] \wurzel[4]{1} [/mm]

Nun wird [mm] \lambda [/mm] = [mm] \pm [/mm] 1 v [mm] \lambda [/mm] = [mm] \pm [/mm] i als Lösung angegeben und dementsprechend dann [mm] y_h(x) [/mm] = [mm] c_1e^x+c_2e^{-x}+c_3cos(x)+c_4sin(x) [/mm]

Ich verstehe hier nicht, warum [mm] \lambda [/mm] = [mm] \pm [/mm] i werden kann - könnt ihr mir das einmal erklären?

Vielen Dank für die Hilfe

        
Bezug
Lösung der DGL bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 11.07.2018
Autor: fred97


> Bestimme für die Differentialgleichung die reale Lösung
>  
> [mm]y^{4}(x)-y(x)=e^{2x}[/mm]
>  Hallo,
>  
> ich wollte bei der o.g. Aufgabe zunächst die zugehörige
> homogene Lösung ermitteln und bin nun leider wieder über
> eine Sache gestolpert.
>  
> Hier mein bisheriger Ansatz:
>  
> [mm]y^{4}(x)-y(x)=e^{2x}[/mm]
>  
> [mm]\lambda^{4}-1=0[/mm]
>  
> [mm]\lambda^{4}[/mm] = 1
>  
> [mm]\lambda[/mm] = [mm]\wurzel[4]{1}[/mm]
>  
> Nun wird [mm]\lambda[/mm] = [mm]\pm[/mm] 1 v [mm]\lambda[/mm] = [mm]\pm[/mm] i als Lösung
> angegeben und dementsprechend dann [mm]y_h(x)[/mm] =
> [mm]c_1e^x+c_2e^{-x}+c_3cos(x)+c_4sin(x)[/mm]
>  
> Ich verstehe hier nicht, warum [mm]\lambda[/mm] = [mm]\pm[/mm] i werden kann
> - könnt ihr mir das einmal erklären?

Die Gleichung [mm] \lambda^4=1 [/mm] hat in der Menge der komplexen Zahlen vier Lösungen :

  1,-1,i und-i


>  
> Vielen Dank für die Hilfe


Bezug
                
Bezug
Lösung der DGL bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Mi 11.07.2018
Autor: Dom_89

Alles klar, danke für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]