matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung der Aufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösung der Aufgabe
Lösung der Aufgabe < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung der Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 11.03.2008
Autor: Ilias

Aufgabe
Bestimmen sie die Lösung des folgenden Anfangswertproblem und das größte INtervall, auf dem die Lösung definiert ist:
[mm] u^{'}(t)+u(t)=e^{3t} [/mm] ;u(0)=0

Also ich hab die Aufgabe wie folgt gerechnet, da ich in unserem Skript folgenden Satz gefunden habe:
[mm] u^{'}(t)+p(t)u(t)=q(t) [/mm]  

somit kann ich wie folgt die DGL lösen:
[mm] u(t)=u_{0}*e^{-P(t)+P(t0)}+e^{-P(t)}*\integral_{t0}^{t}{e^{P(s)}*q(s) ds} [/mm]

Schritt 1:
[mm] u(t)=u_{0}*e^{-t}+e^{-t}*\integral_{0}^{t}{e^{s}*e^{3s} ds} [/mm]

Schritt 2:
[mm] u(t)=u_{0}*e^{-t}+e^{-t}*\integral_{0}^{t}{e^{4s} ds} [/mm]

Schritt3:
[mm] u(t)=u_{0}*e^{-t}+e^{-t}*(e^{4t}/4-1/4) [/mm]

Schritt 4:
[mm] u(t)=u_{0}*e^{-t}+e^{3t}/4-(e^{-t}/4) [/mm]

ist zwar ne blöde frage, aber wie soll ich jetzt genau weitermachen?

man hat mir gesagt, das man diese Aufgabe auch mittels dem integrierenden Faktor lösen kann. Könnt ihr mir vieleicht sagen, wann ich den oberen Satz oder den integrierenden faktor verwenden sollte? Wann wäre was geschickter...ok vielen dank

Gruß Ilias

        
Bezug
Lösung der Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Di 11.03.2008
Autor: maddhe

hi!
die Lösung der DGL scheint mir nicht ganz richtig...
ich versuchs mal:
[mm] u'(t)=-u(t)+e^{3t} [/mm]
1. schritt: man betrachte die homogene Gleichung u(t)=-u(t) [mm] \Rightarrow u(t)=e^{-t}c [/mm]
2. schritt: Variation der Konstanten: [mm] u(t)=e^{-t}c(t) [/mm] (0)
[mm] \Rightarrow u'(t)=-e^{-t}c(t)+e^{-t}c'(t) [/mm] (1)
In der gegebenen DGL steht [mm] u'(t)=-u(t)+e^{3t} [/mm] und mit der Substitution am Anfang dieses Schrittes: [mm] u'(t)=-e^{-t}c(t)+e^{3t} [/mm] (2)
3. schritt: (1) und (2) gleichsetzen liefert: [mm] -e^{-t}c(t)+e^{-t}c'(t)=-e^{-t}c(t)+e^{3t} \gdw e^{-t}c'(t)=e^{3t} \gdw c'(t)=e^{4t} \gdw c(t)=\integral_{0}^{t}{e^{4s}ds}+u_0 \gdw c(t)=\bruch{1}{4}e^{4t}+u_0 [/mm]
4. schritt: einsetzen in (0) liefert [mm] u(t)=u_0e^{-t}+\bruch{1}{4}e^{3t} [/mm]
5. schritt (anfangswertproblem: bestimme [mm] u_0 [/mm] so, dass u(0)=0):
[mm] u(0)=u_0e^{0}+\bruch{1}{4}e^{0}=u_0+\bruch{1}{4}=0 \gdw u_0=-\bruch{1}{4} [/mm]

fertige Funktion ist also: [mm] u(t)=-\bruch{1}{4}e^{-t}+\bruch{1}{4}e^{3t} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]