matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Lösung Ungleichung gesucht
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Lösung Ungleichung gesucht
Lösung Ungleichung gesucht < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung Ungleichung gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Fr 22.05.2009
Autor: ganzir

Aufgabe
[mm] \bruch{x}{x-1}\ge \bruch{x+2}{x+3} [/mm]


Für welche [mm] x\in\IR [/mm] ist diese Ungleichung gültig?

Ich würde sagen, dass x [mm] \not= [/mm] 1 und x [mm] \not= [/mm] -3 sein darf, da sonst die Brüche im Nenner Nullen haben, was ja nicht sein darf.

Zunächst bringe ich mal auf eine Seite:

[mm] \bruch{x}{x-1}-\bruch{x+2}{x+3} \ge [/mm] 0

Dann bringe ich auf einen Nenner:

[mm] \bruch{x(x+3)}{(x-1)(x+3)}-\bruch{(x+2)(x-1)}{(x+3)(x-1)} \ge [/mm] 0

Also:

[mm] \bruch{x(x+3)-(x+2)(x-1)}{(x-1)(x+3)}\ge [/mm] 0

Ich multipliziere zähler und Nenner aus:

[mm] \bruch{x^2+3x-[x^2+x-2]}{x^2+2x-3}\ge [/mm] 0

Noch etwas vereinfachen:

[mm] \bruch{2x+2}{x^2+2x-3}\ge [/mm] 0

Damit nun die Bedingen erfüllt ist, müssen Zähler und Nenner entweder beide Positiv sein oder beide Negativ meine Frage ist nun, wie finde ich die X heraus bei denen das der Fall ist und bei welchen nicht.





        
Bezug
Lösung Ungleichung gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Fr 22.05.2009
Autor: angela.h.b.


> [mm]\bruch{x}{x-1}\ge \bruch{x+2}{x+3}[/mm]
>
>
> Für welche [mm]x\in\IR[/mm] ist diese Ungleichung gültig?
>  
> Ich würde sagen, dass x [mm]\not=[/mm] 1 und x [mm]\not=[/mm] -3 sein darf,
> da sonst die Brüche im Nenner Nullen haben, was ja nicht
> sein darf.

Hallo,

ja, das ist wichtig.

>  
> Zunächst bringe ich mal auf eine Seite:
>  
> [mm]\bruch{x}{x-1}-\bruch{x+2}{x+3} \ge[/mm] 0
>  
> Dann bringe ich auf einen Nenner:
>  
> [mm]\bruch{x(x+3)}{(x-1)(x+3)}-\bruch{(x+2)(x-1)}{(x+3)(x-1)} \ge[/mm]
> 0
>  
> Also:
>  
> [mm]\bruch{x(x+3)-(x+2)(x-1)}{(x-1)(x+3)}\ge[/mm] 0
>  
> Ich multipliziere zähler und Nenner aus:
>  
> [mm]\bruch{x^2+3x-[x^2+x-2]}{x^2+2x-3}\ge[/mm] 0
>  
> Noch etwas vereinfachen:
>  
> [mm]\bruch{2x+2}{x^2+2x-3}\ge[/mm] 0
>  
> Damit nun die Bedingen erfüllt ist, müssen Zähler und
> Nenner entweder beide Positiv sein oder beide Negativ meine
> Frage ist nun, wie finde ich die X heraus bei denen das der
> Fall ist und bei welchen nicht.

Bei dieser Fragestellung ist es besser, wenn Du im Nenner überhaupt nicht ausmultiplizierst.

[mm]\bruch{2x+2}{(x-1)(x+3)}\ge[/mm] 0  

<==>

[mm]\bruch{2(x+1)}{(x-1)(x+3)}\ge[/mm] 0  .

Der Nenner ist >0, wenn beide Faktoren im Nenner, also (x-1) und (x+3) größer als Null sind, oder wenn sie beide gleichzeitig kleiner als 0 sind.

Gruß v. Angela





Bezug
                
Bezug
Lösung Ungleichung gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Fr 22.05.2009
Autor: ganzir

Aufgabe
Der Nenner ist >0, wenn beide Faktoren im Nenner, also (x-1) und (x+3) größer als Null sind, oder wenn sie beide gleichzeitig kleiner als 0 sind.  

OK danke für den Hinweis,

das ist ja augenscheinlich der Fall, wenn x > 1 ist. Damit ist die Gleichung für positive zähler und nenner erfüllt, wie verhält es sich denn nun mit positivem Zähler und negativem nenner bzw umgekehrt oder gibt es diesen Fall nicht aus Gründen die mir nicht klar sind?

Bezug
                        
Bezug
Lösung Ungleichung gesucht: Hinweise hast du schon
Status: (Antwort) fertig Status 
Datum: 15:17 Fr 22.05.2009
Autor: weightgainer

Hallo ganzir,

in [mm] \bruch{2(x+1)}{(x-1)(x+3)}\ge 0 [/mm] steckt zusammen mit Angelas Hinweisen alles drin:
1. Möglichkeit: Nenner und Zähler sind beide größer (Nenner) bzw. größer/gleich 0. Dann ist auch der gesamte Bruch größer als 0. Da im Nenner ein Produkt steht, gibt es da allerdings zwei Fälle, in denen er größer als 0 wird, nämlich einmal, wenn beide Klammern kleiner sind als 0 und dann, wenn beide Klammern größer sind als 0.

2. Möglichkeit: Nenner und Zähler sind beide kleiner (Nenner) bzw. kleiner/gleich 0. Auch dann ist der gesamte Bruch größer als 0. Im Nenner gibt es wieder zwei Möglichkeiten.

Also hast du insgesamt 4 verschiedene Fälle, in jedem Fall hast du 3 Bedingungen für das x, die alle gleichzeitig erfüllt sein müssen. Jetzt kann es passieren, dass sich die Bedingungen widersprechen und dann kann der Fall eben nicht eintreten.
Am Ende ist die "Vereinigung" (Fachbegriff) aller Möglichkeiten für x aus den 4 Fällen deine gesamte Lösungsmenge.

Ein Beispiel hast du ja vollständig aufgeschrieben:
Zähler [mm] \ge [/mm] 0 [mm] \gdw [/mm] x+1 [mm] \ge0 \gdw [/mm] x [mm] \ge [/mm] -1
Nenner > 0 [mm] \gdw [/mm] 1. Fall: beide Klammern >0, also x > 1 und x > -3.
Die Bedingungen sind also alle drei erfüllt, wenn x > 1 gilt.

Das machst du jetzt noch für die anderen drei Fälle und bist fertig.

Gruß,
weightgainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]