matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLösung Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Lösung Formel
Lösung Formel < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung Formel: Eigentlich eine einfache Aufga
Status: (Frage) beantwortet Status 
Datum: 00:28 Mi 05.05.2010
Autor: sethonator

Aufgabe
Hier muss man nur die Gleichung lösen. Aber irgendwie komm ich nicht weiter

[mm] (2^{2x})-4*(2^x)-32 [/mm] = 0

Ich bin soweit gekommen, dass ich aus allem einen Basis mit 2 mache, also

[mm] ((2^2)^x)-(2^2)*(2^x)-(2^5) [/mm] = 0

Dann muss ich doch irgendwann was mit Logarithmus machen. Aber wie geht das nochmal, ich steh total auf'n Schlauch.

Ich weiß, dass das Ergebnis x=3 ist, aber wie ist der Rechenweg?

Vielen Dank

        
Bezug
Lösung Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Mi 05.05.2010
Autor: MontBlanc

Hallo,

substituiere [mm] u=2^x [/mm] . Dann bekommst du eine quadratische Gleichung in u, die du mit pq-Formel lösen kannst, danach subsituierst du zurück mit [mm] x=\bruch{log(u)}{log(2)}. [/mm]

Lg

Bezug
        
Bezug
Lösung Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Mi 05.05.2010
Autor: Fawkes

Hi,
also zu der Sache mit der Substitution kann ich nix sagen, ich häts jedenfalls so gemacht:
[mm] (2^{2x})-4*(2^x)-32 [/mm] = 0
[mm] (2^{x})^2-2*2*(2^x)+2^2-2^2-32 [/mm] = 0
[mm] ((2^{x})^2-2*2*(2^x)+2^2)-36 [/mm] = 0
Anwendung der 2. binomischen Formel:
[mm] (2^{x}-2)^2-36 [/mm] = 0
Anwendung der 3. bin. Formel:
[mm] ((2^{x}-2)-\wurzel{36})*((2^{x}-2)+\wurzel{36}) [/mm] = 0
[mm] ((2^{x}-2)-\wurzel{36}) [/mm] = 0 oder [mm] ((2^{x}-2)+\wurzel{36}) [/mm] = 0
[mm] ((2^{x}-2)-6) [/mm] = 0 oder [mm] ((2^{x}-2)+6) [/mm] = 0
[mm] 2^{x} [/mm] = 8 oder [mm] 2^{x} [/mm] = -4
log [mm] 2^{x} [/mm] = log 8
x log 2 = log 8
x = log 8 / log 2 = 3
[mm] 2^{x} [/mm] = -4 fällt weg, da man aus negativen Zahlen keinen Log ziehen kann.
Hoffe es hat dir geholfen.
Gruß Fawkes


Bezug
                
Bezug
Lösung Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Mi 05.05.2010
Autor: MontBlanc

Hallo,

so geht das natürlich die Substitution ist eben etwas schneller, du hast :

[mm] u^2-4u-32=0 \Rightarrow [/mm] $ (u+4)*(u-8)=0 [mm] \Rightarrow u_1=-4 \wedge u_2=8 [/mm] $

[mm] -4=2^{x_1} \Rightarrow [/mm] keine Lösung

[mm] 8=2^{x_2} \Rightarrow x_2=3 [/mm]

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]