matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLösung 3d Wellengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Lösung 3d Wellengleichung
Lösung 3d Wellengleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung 3d Wellengleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:58 Sa 05.05.2007
Autor: hiohliuzh

Aufgabe
Lösen Sie die dreidimensionale Wellengleichung

     [mm] \Delta [/mm] u - [mm] \partial_t^2 [/mm] u = 0

mit der unstetigen Anfangsbedingung

u [mm] (x,0)=u_0= [/mm] 0 ,

   [mm] u_t(x,0)=\left\{\begin{matrix} 1, & \mbox{wenn }|x| \le \mbox{1} \\ 0, & \mbox{sonst} \mbox{ } \end{matrix}\right. [/mm]

und untersuchen Sie die Unstetigkeiten der Lösung u(x,t).

Hallo.

Vor weg. Ich bin erst poster. Und bitte um Nachsicht, falls noch nicht alles perfekt ist. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Frage ist nun, wie man diese zweite Anfangsbedingung [mm] u_t [/mm] verarbeiten kann.

Die Lösungen ergeben sich nach einer Formel aus der Vorlesung mit

u(x,t)= [mm] t\cdot M(t)[u_t](x) [/mm] + [mm] \partial_t(t\cdot M(t)[u_0](x)) [/mm]

wobei

M(t) [u](x) = [mm] \bruch{1}{4 \pi}\integral_{S^2}^{} [/mm] u(x+t [mm] \xi) \, [/mm] dx  

ist.

Also für [mm] u_0 [/mm] ist der Operator ja trivial. Nämlich 0!?
Probleme hat uns beim rechnen aber die Bedingung [mm] u_t(x,0) [/mm] gemacht. Denn setzt man in das Integral 1 ein, ergibt sich integriert [mm] 4\pi [/mm] und somit für [mm] M(t)[u_t](x)=1. [/mm] Die allgemein Lösung wäre dann u(x,t)=t. Das erscheint uns aber nicht richtig... Kann jemand sagen, wie man die zweite Bedingung zu lesen hat?

        
Bezug
Lösung 3d Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:17 Di 08.05.2007
Autor: MatthiasKr

Hallo,
> Lösen Sie die dreidimensionale Wellengleichung
>  
> [mm]\Delta[/mm] u - [mm]\partial_t^2[/mm] u = 0
>  
> mit der unstetigen Anfangsbedingung
>
> u [mm](x,0)=u_0=[/mm] 0 ,
>
> [mm]u_t(x,0)=\left\{\begin{matrix} 1, & \mbox{wenn }|x| \le \mbox{1} \\ 0, & \mbox{sonst} \mbox{ } \end{matrix}\right.[/mm]
>  
> und untersuchen Sie die Unstetigkeiten der Lösung u(x,t).
>  
> Hallo.
>  
> Vor weg. Ich bin erst poster. Und bitte um Nachsicht, falls
> noch nicht alles perfekt ist. Ich habe diese Frage in
> keinem Forum auf anderen Internetseiten gestellt.
>  
> Die Frage ist nun, wie man diese zweite Anfangsbedingung
> [mm]u_t[/mm] verarbeiten kann.
>  
> Die Lösungen ergeben sich nach einer Formel aus der
> Vorlesung mit
>  
> u(x,t)= [mm]t\cdot M(t)[u_t](x)[/mm] + [mm]\partial_t(t\cdot M(t)[u_0](x))[/mm]
>  
> wobei
>
> M(t) (x) = [mm]\bruch{1}{4 \pi}\integral_{S^2}^{}[/mm] u(x+t [mm]\xi) \, dx[/mm]


Ich gehe mal davon aus, dass hier ueber [mm] $\xi$ [/mm] integriert wird, sonst macht das naemlich keinen sinn....


> Also für [mm]u_0[/mm] ist der Operator ja trivial. Nämlich 0!?
> Probleme hat uns beim rechnen aber die Bedingung [mm]u_t(x,0)[/mm]
> gemacht. Denn setzt man in das Integral 1 ein, ergibt sich
> integriert [mm]4\pi[/mm] und somit für [mm]M(t)[u_t](x)=1.[/mm]

So leicht ist das natuerlich nicht.... [mm] $u_t$ [/mm] ist ja nur innerhalb der einheitskugel gleich 1, d.h. es wird vermutlich schwierig sein, einen geschlossenen ausdruck fuer dieses integral zu finden. denn das integral haengt vom wert x (um diesen wird integriert) und t (mit diesem radius wird integriert) ab.


>Die allgemein [/u]

> Lösung wäre dann u(x,t)=t. Das erscheint uns aber nicht
> richtig... Kann jemand sagen, wie man die zweite Bedingung
> zu lesen hat?  

VG
Matthias


Bezug
                
Bezug
Lösung 3d Wellengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Sa 12.05.2007
Autor: hiohliuzh

Danke für die Hilfe.
Die Lösung u(x,t)=t war schon eine Lösung, aber anscheinend nicht die einzige. Man kann noch zahlreiche Fallunterscheidungen machen und die Aufgabe bezüglich Unstetigkeiten untersuchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]