matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösen von Gleichungsystemen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lösen von Gleichungsystemen
Lösen von Gleichungsystemen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Gleichungsystemen: 2 Gleichungen, 4 Unbekannte
Status: (Frage) beantwortet Status 
Datum: 22:36 Mi 12.01.2011
Autor: Riedi

Aufgabe
Hallo Leute, brauche mal bitte eure Hilfe, hab hier folgende Aufgabe:
Lösen Sie das folgende Gleichungssystem mit Hilfe des Gaußschen Algorithmus, d.h. geben Sie die Lösungsmenge an. Geben Sie außerdem den Rang und die Determinante der Matrix an. Geben Sie auch den Rang der erweiterten Matrix an.

[mm] \begin{pmatrix} 1 & 5 & -1 & -9 \\ -6 & 6 & -9 & -15 \end{pmatrix} * \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} = \begin{pmatrix} -1 \\ -21 \end{pmatrix} [/mm]


Ich poste mal meine bisherige Lösung:

[mm] \begin{pmatrix} 1 & 5 & -1 & -9 \\ 0 & 36 & 15 & -39 \end{pmatrix} * \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} = \begin{pmatrix} -1 \\ -27 \end{pmatrix} [/mm]

Ergibt folgendes Gleichungssystem:
x1 + 5x2-   x3-  9x4=-1
    36x2- 15x3- 13x4=-9

Ich wähle Λ=x3 und µ=x4

Dann stelle ich die 2. Gleichung nach x2 um:

[mm]x2 = -\bruch{9}{12}+\bruch{5}{12}[/mm]Λ[mm]-\bruch{13}{12}[/mm]µ

x2 dann in die 1. Gleichung eingesetzt ergibt:

[mm]x1 = \bruch{57}{12}-\bruch{13}{12}[/mm]Λ[mm]-\bruch{173}{12}[/mm]µ

Und somit meine Lösungsmenge:

[mm] L = \begin{pmatrix} \bruch{57}{12} \\ -\bruch{9}{12} \\ 0 \\ 0 \end{pmatrix} [/mm]+Λ[mm] \begin{pmatrix} -\bruch{13}{12} \\ \bruch{5}{12} \\ 1 \\ 0 \end{pmatrix} [/mm]+µ[mm] \begin{pmatrix} -\bruch{173}{12} \\ -\bruch{13}{12} \\ 0 \\ 1 \end{pmatrix} [/mm]

Tut mir leid wegen des Codes, war mein erste Post, bin noch net ganz fit in Formeln eingeben.
So erstmal die Frage, ist meine Lösung richtig? Bin mir nicht sicher ob das so richtig ist mit den Parametern Müh und Lambda.
Desweiteren wird in der Aufgabenstellung nach den Rang der Matrix und dem Rang der erweiterten Matrix gefragt. Ich dachte immer der Rang der Matrix und der der erweiterten Matrix ist ein und das gleiche. Der Rang wird doch definiert als die Anzahl der Zeilenvektoren, die nach dem Umformen ungleich 0 sind.

Also in meiner Aufgabe rg(A)=2, oder nicht?

Auch das Ausrechnen der Determinante ist mir nicht 100%ig klar. Bis jetzt habe ich nur mxm Matrizen berechnet. Ist das jetzt hier so das ich meine Determinate einfach wie folgt aufstelle:

det(A)=1+36=36 ?

Ich hoffe ihr könnt mir ein Wenig weiterhelfen. Achso bei meiner Lösungsmenge hab ich Lambda und Müh is Element IR vergessen.

VG
Riedi

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lösen von Gleichungsystemen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Do 13.01.2011
Autor: fred97


> Hallo Leute, brauche mal bitte eure Hilfe, hab hier
> folgende Aufgabe:
>  Lösen Sie das folgende Gleichungssystem mit Hilfe des
> Gaußschen Algorithmus, d.h. geben Sie die Lösungsmenge
> an. Geben Sie außerdem den Rang und die Determinante der
> Matrix an. Geben Sie auch den Rang der erweiterten Matrix
> an.
>  
> [mm] \begin{pmatrix} 1 & 5 & -1 & -9 \\ -6 & 6 & -9 & -15 \end{pmatrix} * \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} = \begin{pmatrix} -1 \\ -21 \end{pmatrix} [/mm]
>  
> Ich poste mal meine bisherige Lösung:
>  
> [mm] \begin{pmatrix} 1 & 5 & -1 & -9 \\ 0 & 36 & 15 & -39 \end{pmatrix} * \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} = \begin{pmatrix} -1 \\ -27 \end{pmatrix} [/mm]
>  
> Ergibt folgendes Gleichungssystem:
>  x1 + 5x2-   x3-  9x4=-1
>      36x2- 15x3- 13x4=-9
>  
> Ich wähle Λ=x3 und µ=x4
>  
> Dann stelle ich die 2. Gleichung nach x2 um:
>  
> [mm]x2 = -\bruch{9}{12}+\bruch{5}{12}[/mm]Λ[mm]-\bruch{13}{12}[/mm]µ
>  
> x2 dann in die 1. Gleichung eingesetzt ergibt:
>  
> [mm]x1 = \bruch{57}{12}-\bruch{13}{12}[/mm]Λ[mm]-\bruch{173}{12}[/mm]µ
>  
> Und somit meine Lösungsmenge:
>  
> [mm] L = \begin{pmatrix} \bruch{57}{12} \\ -\bruch{9}{12} \\ 0 \\ 0 \end{pmatrix} [/mm]+Λ[mm] \begin{pmatrix} -\bruch{13}{12} \\ \bruch{5}{12} \\ 1 \\ 0 \end{pmatrix} [/mm]+µ[mm] \begin{pmatrix} -\bruch{173}{12} \\ -\bruch{13}{12} \\ 0 \\ 1 \end{pmatrix} [/mm]
>  
> Tut mir leid wegen des Codes, war mein erste Post, bin noch
> net ganz fit in Formeln eingeben.
>  So erstmal die Frage, ist meine Lösung richtig? Bin mir
> nicht sicher ob das so richtig ist mit den Parametern Müh
> und Lambda.


Das hab ich nicht nachgerechnet, sieht aber auf den ersten Blick gut aus.


>  Desweiteren wird in der Aufgabenstellung nach den Rang der
> Matrix und dem Rang der erweiterten Matrix gefragt. Ich
> dachte immer der Rang der Matrix und der der erweiterten
> Matrix ist ein und das gleiche.


Nein. Schau Dir mal das an:

              [mm] \pmat{ 1&1&|&1\\ 0&0&|&1 } [/mm]

>  Der Rang wird doch
> definiert als die Anzahl der Zeilenvektoren, die nach dem
> Umformen ungleich 0 sind.
>  
> Also in meiner Aufgabe rg(A)=2, oder nicht?

Ja


>  
> Auch das Ausrechnen der Determinante ist mir nicht 100%ig
> klar. Bis jetzt habe ich nur mxm Matrizen berechnet. Ist
> das jetzt hier so das ich meine Determinate einfach wie
> folgt aufstelle:
>  
> det(A)=1+36=36 ?


Hä ? Für nichtquadratische Matrizen gibt es den Begriff der Determinante nicht !


FRED

>  
> Ich hoffe ihr könnt mir ein Wenig weiterhelfen. Achso bei
> meiner Lösungsmenge hab ich Lambda und Müh is Element IR
> vergessen.
>  
> VG
>  Riedi
>  
> # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]