matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenLösen einer komplexen Gleichun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Lösen einer komplexen Gleichun
Lösen einer komplexen Gleichun < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen einer komplexen Gleichun: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 27.10.2009
Autor: kch

Aufgabe
Lösen Sie die folgende Gleichung:
(z+1)/(z-1)=2z+3i

Mein Lösungsansatz ist:
z+1=(2z+3i)(z-1)
[mm] 0=2z^2-2z+3iz-3i-z-1 [/mm]
[mm] 0=2z^2+z(-2+3i-1)-3i-1 [/mm]
Dann z=x+iy einsetzen und der Realteil und der Imaginärteil muss 0 sein.
Das ergibt dann:
[mm] 0=2x^2-2y^2-3x-3y-1 [/mm] und 0=4xy+3x-3y-1
Das wird aber eine total lange Rechnung. Ich kann mir das nicht vorstellen, denn als Lösung wird lapidar im Buch
[mm] z_0=1/2(3-i) [/mm] und [mm] z_1 [/mm] = -i
angegeben.
Hat einer einen Tipp wie man die Gleichung leichter lösen kann?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lösen einer komplexen Gleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Di 27.10.2009
Autor: abakus


> Lösen Sie die folgende Gleichung:
>  (z+1)/(z-1)=2z+3i
>  Mein Lösungsansatz ist:
>  z+1=(2z+3i)(z-1)
>  [mm]0=2z^2-2z+3iz-3i-z-1[/mm]
>  [mm]0=2z^2+z(-2+3i-1)-3i-1[/mm]

Was hast du gegen diese quadratische Gleichung?
Normalform:
[mm] 0=z^2+z(-1,5+1,5i)-1,5i-0,5 [/mm]
[mm] z_{1,2}=... [/mm]
Gruß Abakus

>  Dann z=x+iy einsetzen und der Realteil und der
> Imaginärteil muss 0 sein.
>  Das ergibt dann:
>  [mm]0=2x^2-2y^2-3x-3y-1[/mm] und 0=4xy+3x-3y-1
>  Das wird aber eine total lange Rechnung. Ich kann mir das
> nicht vorstellen, denn als Lösung wird lapidar im Buch
>  [mm]z_0=1/2(3-i)[/mm] und [mm]z_1[/mm] = -i
> angegeben.
> Hat einer einen Tipp wie man die Gleichung leichter lösen
> kann?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Lösen einer komplexen Gleichun: Frage zur Lösung
Status: (Frage) beantwortet Status 
Datum: 17:49 Di 27.10.2009
Autor: kch

Aufgabe
[mm] 0=z^2+(-1.5+1.5i)z-1.5i-0.5 [/mm]
[mm] z_{1,2}=... [/mm]

Ich kannte die allgemeine Lösung in der Normalform nicht und habe nun gefunden:
[mm] az^2+bz+c=0 [/mm]
wird durch
[mm] z_{1,2}=-b/(2a)\pm \sqrt{4ac-b^2}/(2a) [/mm] i
gelöst wird.
Nun habe ich eingesetzt und erhalte:
[mm] z_{1,2} [/mm] = 3/4-3/4i [mm] \pm \sqrt{-2-3/2i}/2 [/mm] i
aber das ist doch nicht lösbar?

Bezug
                        
Bezug
Lösen einer komplexen Gleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Di 27.10.2009
Autor: leduart

Hallo
im komplexen kann man doch jede Wurzel einfach ziehen. schreib die entsprechende Zahl [mm] z=x+iy=r*e^{i\phi+2\pi*n} [/mm]
dann ist [mm] \wurzel{z}=\wurzel{r}*e^{i\phi/2+2\pi*n/2} [/mm]
auf anderem Weg, also direkt mit x+iy ist viel umstaendlicher.
am Ende kannst du natuerlich wieder [mm] z=rcos\phi+rsin\phi [/mm] umwandeln.
warum du die Lösung mit dem i bei der wurzel geschrieben hast versteh ich nicht.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]