matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLösen LGS + dubiosen Parameter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Lösen LGS + dubiosen Parameter
Lösen LGS + dubiosen Parameter < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen LGS + dubiosen Parameter: wie am besten lösen?
Status: (Frage) beantwortet Status 
Datum: 15:23 So 05.12.2004
Autor: pisty

Gegeben ist das von einem Parameter λ € R abhängige lineare Gleichungssystem:

x1 + x2 + λx3 = 1
x + λx2 + x3 = λ
λx1 + x2 + x3 = λ²

habe es nun wie folgt umgeform, und möchte wissen ob dies so in Ordnung ist.

Z1:        1      1     λ     1
Z2:         1     λ     1     λ
Z3:         λ     1     1     λ²

Z1:                 1     1     λ     1
Z4=Z1-Z2:     0     1-λ     λ-1     1-λ
Z5=(λ*Z1)-Z3:      0    λ-1     λ²-1     λ-λ²

Z1:                 1     1     λ     1
Z4:          0     1-λ     λ-1     1-λ
Z6=Z4+Z5:     0     0    λ²+λ-2     -λ²+1

gefragt ist nun

a) Für welche λ ist das Gleichungssystem eindeutig lösbar?
b) Für welche λ existieren unendlich viele Lösungen?
c) Für welche λ existieren keine Lösungen?
d) Berechnen Sie die Lösungen im Falle der Lösbarkeit.


dazu meine Antwort:

erstmal löse ich das LGS

x1= -1


x2= -2/(λ+2)


x3= -1/(λ-2)

stimmen diese Ergebnisse?

aus der 6. Zeile entnehme ich zudem λ²+λ-2.
Da dies ungelich Null ist - bedeutet dies das für dieses eine eindeutige Lösung vorliegt.
Wenn ich dies dann in die quadr. Lösungsformel eingebe, bekomme ich λ1=1 und λ2=-2 raus

wenn die Frage a) dann lautet für welche λ ist das GS eindeutig lösbar, so ist dies für
L=(λ≠1, λ≠-2)

wie verfahre ich aber mit den Aufgaben b-d?

sitz nun ne weile an der Aufgabe und komme nicht weiter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lösen LGS + dubiosen Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 05.12.2004
Autor: baskolii


> Gegeben ist das von einem Parameter λ € R abhängige
> lineare Gleichungssystem:
>
> x1 + x2 + λx3 = 1
> x + λx2 + x3 = λ
> λx1 + x2 + x3 = λ²
>
> habe es nun wie folgt umgeform, und möchte wissen ob dies
> so in Ordnung ist.
>
> Z1:        1      1     λ     1
> Z2:         1     λ     1     λ
> Z3:         λ     1     1     λ²
>
> Z1:                 1     1     λ     1
> Z4=Z1-Z2:     0     1-λ     λ-1     1-λ
>
> Z5=(λ*Z1)-Z3:      0    λ-1     λ²-1    
> λ-λ²
>
> Z1:                 1     1     λ     1
> Z4:          0     1-λ     λ-1     1-λ
>
> Z6=Z4+Z5:     0     0    λ²+λ-2     -λ²+1
>
>
> gefragt ist nun
>  
> a) Für welche λ ist das Gleichungssystem eindeutig
> lösbar?
> b) Für welche λ existieren unendlich viele Lösungen?
>
> c) Für welche λ existieren keine Lösungen?
> d) Berechnen Sie die Lösungen im Falle der Lösbarkeit.
>
>
>
> dazu meine Antwort:
>  
> erstmal löse ich das LGS
>  
> x1= -1
>  
>
> x2= -2/(λ+2)
>  
>
> x3= -1/(λ-2)
>  
> stimmen diese Ergebnisse?

wie kommst du darauf? Aus deinen Umformungen siehst du doch das [mm] x_3=\frac{1-\lambda^2}{\lambda^2+\lambda-2} [/mm]

>  
> aus der 6. Zeile entnehme ich zudem λ²+λ-2.
> Da dies ungelich Null ist - bedeutet dies das für dieses
> eine eindeutige Lösung vorliegt.
> Wenn ich dies dann in die quadr. Lösungsformel eingebe,
> bekomme ich λ1=1 und λ2=-2 raus
>
> wenn die Frage a) dann lautet für welche λ ist das GS
> eindeutig lösbar, so ist dies für
> L=(λ≠1, λ≠-2)

das ist aber nur richtig, da zufällig deine zweite Zeile für [mm] \lambda\not=0 [/mm] mit eindeutigem [mm] x_3 [/mm] eindeutig lösbar ist!!

>
> wie verfahre ich aber mit den Aufgaben b-d?
>  
> sitz nun ne weile an der Aufgabe und komme nicht weiter
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

unendlich viele Lösungen existieren z.B. wenn in deinem System eine Nullzeile vorkommt. Also in deinem Fall für [mm] \lambda=1. [/mm]
keine Lösungen gibt es z.B. wenn eine Gleichung der Form [mm] 0*x_1+0*x_2+0*x_3=a, a\not=0. [/mm] Bei dir also für [mm] \lambda=-2 [/mm]

mfg Verena


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]