matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösbarkeit LGS mit 3 Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lösbarkeit LGS mit 3 Reihen
Lösbarkeit LGS mit 3 Reihen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösbarkeit LGS mit 3 Reihen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:20 Do 21.10.2010
Autor: krueemel

Aufgabe
Für welche Werte des Parameters a besitzt das LGS
a) keine Lösung
b) unendlich viele Lösungen
c) genau eine Lösung?

Hi,
es ist ein lineares Gleichungssystem nach folgendem Schema gegeben:
x1 + x2 + x3 = 1
2x1+3x2 + ax3 = 2
....
(ingesamt also 3 zeilen, die Werte sind hier frei ausgedacht)

Nun weiß ich, dass es die Determinante Null ist, es keine Lösung gibt. Doch wann gibt es genau eine Lösung und wann unendlich viele?



        
Bezug
Lösbarkeit LGS mit 3 Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Do 21.10.2010
Autor: M.Rex

Hallo

Wenn die Determinante Null ist, ist das Gleichungssystem nicht eindeutig lösbar, so dass die beiden Fälle "unendlich viele Lösungen" und "keine Lösung" abzuprüfen sind.

Ist die Determinante dagegen nicht Null, gibt es eine eindeutige Lösung für [mm] x_{1}, x_{2} [/mm] und [mm] x_{3}, [/mm] die aber vom Parameter a abhängig sein kann.

Marius


Bezug
                
Bezug
Lösbarkeit LGS mit 3 Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 21.10.2010
Autor: krueemel

okay, vielen Dank.
Angenommen die Determinante ist Null, wann gibt es dann eine, und wann unendlich viele Lösungen?!

Bezug
                        
Bezug
Lösbarkeit LGS mit 3 Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Do 21.10.2010
Autor: M.Rex

Hallo

> okay, vielen Dank.
>  Angenommen die Determinante ist Null, wann gibt es dann
> eine, und wann unendlich viele Lösungen?!


Wenn die Determinante Null ist, kann es nicht mehr genau eine Lösung geben.

Für unendlich viele Lösungen schau dir mal den Rang der Koeffizientenmatrix an. Was kannst du darüber denn sagen? Was passiert, wenn der Rang in deinem Fall nicht 3 ist? Was bedeutet das dann auf die "Gleichungsebene" übertragen?

Marius


Bezug
                                
Bezug
Lösbarkeit LGS mit 3 Reihen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:49 Do 21.10.2010
Autor: krueemel

Ich weiß folgendes:
Ist der Rang r = n (Anzahl der Spaltenvektoren) dann sind die Vektoren linear unabhängig.

Ist r < n, linear abhängig

heißt das, wenn r = n habe ich genau eine Lösung, wenn nicht, unendlich viele?

Bezug
        
Bezug
Lösbarkeit LGS mit 3 Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 21.10.2010
Autor: angela.h.b.


> Für welche Werte des Parameters a besitzt das LGS
>  a) keine Lösung
>  b) unendlich viele Lösungen
>  c) genau eine Lösung?
>  Hi,
>  es ist ein lineares Gleichungssystem nach folgendem Schema
> gegeben:
>  x1 + x2 + x3 = 1
>  2x1+3x2 + ax3 = 2
>  ....
>  (ingesamt also 3 zeilen, die Werte sind hier frei
> ausgedacht)


Hallo,

ich frage mich, warum Du nicht ein gescheites Beispiel postest ohne ...
Dann wüßte man, worüber hier geredet werden soll.

Hier soll wohl über ein LGS mit drei Gleichungen und drei Variablen geredet werden.

>  
> Nun weiß ich, dass es die Determinante Null ist, es keine
> Lösung gibt.

Wenn die Determinante der Koeffizientenmatrix =0 ist, dann gibt es entweder keine oder viele Lösungen.

Keine Lösung gibt es, wenn der Rang der Koeffizientenmatrix und der der erweiterten Koeffizientnematrix verschieden sind,
viele Lösungen gibt es, wenn die Ränge gleich sind.

> Doch wann gibt es genau eine Lösung

Genau eine Lösung gibt es, wenn die Koeffizientenmatrix vollen Rang hat, bei einer [mm] 3\times [/mm] 3-Matrix also den Rang 3.
(Das ist der Fall, wenn die Det. der Koeffizientenmatrix [mm] \not=0 [/mm] ist)

Gruß v. Angela


Bezug
                
Bezug
Lösbarkeit LGS mit 3 Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Do 21.10.2010
Autor: krueemel

alles klar. Vielen Dank!

Im Prinzip ist es dann ja logisch, fällt eine Zeile weg, so ist der Rang ja kleiner als Zeilenanzahl und es gibt unendlich viele Lösungen. Ist der Rang gleich so ist ja sozusagen alles definiert und es gibt eine eindeutige Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]