matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLösbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Lösbarkeit
Lösbarkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:15 Di 15.06.2010
Autor: Hoffmann79

Aufgabe
[mm] \underline{A} \in \IR^{m \times n} [/mm] sei eine Matrix mit Spaltenvektoren [mm] \underline{a}_{1}, ...,\underline{a}_{n}. [/mm] Betrachen Sie das LGS [mm] \underline{A}\underline{x}=2\underline{a}_{1}+\underline{a}_{2} [/mm]
Welcher der Fälle "nicht lösbar", "lösbar", "eindeutig lösbar" kann auftreten? (Begründung!)

Hallo allerseits,

hab mal wieder ein Problem. Die ganze Sache mit der Lösbarkeit von LGS ist wohl etwas an mir vorbeigegangen bzw. leuchtet mir bisher nicht ein.
Hier mal mein "Wissen" zu dem Thema:

Sei A eine (m,n)-Matrix und b ein Element aus Km. Dann gilt:

1) Lösbarkeit: Das LGS Ax=b ist lösbar, wenn Rang A = Rang A|b gilt. Das ist so, weil b dann im Erzeugnis der Spalten liegt und als Linearkombination dargestellt werden kann.

2) Eindeutige Lösbarkeit: Das LGS Ax=b ist eindeutig lösbar, wenn Rang A = Rang A|b = n.
Denn, wenn Rang A = n ist sind die Spalten linear unabhängig und jeder Vektor aus ihrem Erzeugnis besitzt damit eine eindeutige Darstellung. als Linearkombination.

3) universelle Lösbarkeit: Das LGS Ax=b ist für jedes beliebige b aus [mm] K^m [/mm] lösbar, wenn Rang A = m gilt. Denn ist der Rang A = m, dann findet man m linear unabhängige Spaltenvektoren, die somit den ganzen [mm] K^m [/mm] aufspannen, und folglich ist jedes b aus [mm] K^m [/mm] als Linearkombination der Spalten darstellbar.

4) universelle und eindeutige Lösbarkeit: Das LGS Ax=b ist für jeden beliebigen Vektor b eindeutig lösbar, wenn n=m und A invertierbar ist. Das ist so, weil 2) und 3) erfüllt sein muss, und daraus folgt auch die Invertierbarkeit der Matrix, da der Rang maximal ist.

Das LGS ist inhomogen. So, das einzige was ich an der Aufgabe sehe ist, dass [mm] \underline{a}_{1} [/mm] und  [mm] \underline{a}_{2} [/mm] in beiden Seiten des LGS vorkommen, d.h. da besteht eine lineare Abhängigkeit. Der Rang der rechten Seite ist 2, wegen dieser Vektoren?

Mir fehlt der Zusammenhang bzw. die Anschauung oder Kombinationsgabe dafür.

Vielleicht kann sich jemand hier im Forum erbarmen und mir das ganze etwas erläutern.

MfG

Daniel

        
Bezug
Lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Di 15.06.2010
Autor: fred97

1. Für [mm] \underline{x}:= \vektor{1 \\ 0 \\ . \\ . \\ . \\ 0} [/mm] berechne [mm] \underline{A}\underline{x} [/mm]

2. Für [mm] \underline{x}:= \vektor{0 \\ 1 \\ 0 \\ . \\ . \\ 0} [/mm] berechne [mm] \underline{A}\underline{x} [/mm]

3. Mit 1. und 2. solltest Du sehen, dass das LGS  $ [mm] \underline{A}\underline{x}=2\underline{a}_{1}+\underline{a}_{2} [/mm] $  eine Lösung [mm] \underline{x_0}\ne \underline{0} [/mm] besitzt. Welche ?

Lösbar ist das LGS also schon mal.

4. Eindeutig lösbar wird das LGS im allgemeinen nicht sein. Stell Dir vor es ist [mm] \underline{a_1}= \underline{a_2}= \underline{0}. [/mm]

Kannst Du eine Lösung [mm] \underline{x_1} \ne \underline{x_0} [/mm]  angeben ?

FRED



Bezug
                
Bezug
Lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Di 15.06.2010
Autor: Hoffmann79

Hallo FRED,

tut mir leid, aber mit deinen Hinweisen kann ich so noch nichts anfangen.

1.  [mm] \underline{A} \vektor{1 \\ 0 \\ . \\ . \\ . \\ 0} [/mm] = [mm] \underline{a}_{1} [/mm]

2.  [mm] \underline{A} \vektor{0 \\ 1 \\ . \\ . \\ . \\ 0} [/mm] = [mm] \underline{a}_{2} [/mm]

Tja, aber was fange ich damit an?

Sorry mir leid wenn ich mich dumm anstelle.

MfG

Daniel

Bezug
                        
Bezug
Lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Mi 16.06.2010
Autor: fred97

Ich lasse mal die doofen Unterstriche weg.

Setze [mm] z_1:= \vektor{1 \\ 0 \\ . \\ . \\ . \\ 0} [/mm] und [mm] z_2:= \vektor{0 \\ 1 \\ 0 \\ . \\ . \\ 0} [/mm]

Dann gilt doch

          [mm] $A(2z_1+z_2) [/mm] = [mm] 2a_1+a_2$ [/mm]

Somit ist [mm] x_0:=2z_1+z_2 [/mm] eine Lösung des LGS, oder nicht

FRED



Bezug
                                
Bezug
Lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Mi 16.06.2010
Autor: Hoffmann79

Hallo FRED,

das leuchtet mir ein, d.h ich sehe jetzt, dass [mm] x_{0} [/mm] eine Lösung ist. Was ist aber [mm] x_{1}? [/mm]

Gruß

Bezug
                                        
Bezug
Lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Mi 16.06.2010
Autor: fred97

Wenn $ [mm] \underline{a_1}= \underline{a_2}= \underline{0}, [/mm] $ so liegt ein homogenes LGS vor, das hat immer die triviale Lösung [mm] x_1=0 [/mm]

FRED

Bezug
                                                
Bezug
Lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Mi 16.06.2010
Autor: Hoffmann79

Auf diesem Auge bin ich wohl blind. Woran sehe ich denn, dass [mm] a_{1}=a_{2}=0 [/mm] ist?



Bezug
                                                        
Bezug
Lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mi 16.06.2010
Autor: fred97


> Auf diesem Auge bin ich wohl blind. Woran sehe ich denn,
> dass [mm]a_{1}=a_{2}=0[/mm] ist?

Oh Mann, natürlich muß nicht  [mm]a_{1}=a_{2}=0[/mm]  sein.

Du soltest lesen , was man Dir schreibt !

Es geht darum, ob man garatieren kan, dass das LGS eindeutig lösbar ist.

Garantieren kann mans nicht, denn ist z.b.  [mm]a_{1}=a_{2}=0[/mm] , so gibt es mehr als eine Lösung

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]